A046363 Composite numbers whose sum of prime factors (with multiplicity) is prime.
6, 10, 12, 22, 28, 34, 40, 45, 48, 52, 54, 56, 58, 63, 75, 76, 80, 82, 88, 90, 96, 99, 104, 108, 117, 118, 136, 142, 147, 148, 153, 165, 172, 175, 176, 184, 198, 202, 207, 210, 214, 224, 245, 248, 250, 252, 268, 273, 274, 279, 294, 296, 298, 300, 316, 320, 325
Offset: 1
Keywords
Examples
214 = 2 * 107 -> Sum of factors is 109 -> 109 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
f:=func
; [k:k in [2..350]| not IsPrime(k) and IsPrime(f(k))]; // Marius A. Burtea, Dec 17 2019 -
Maple
ifac := proc (n) local L, x: L := ifactors(n)[2]: map(proc (x) options operator, arrow: seq(x[1], j = 1 .. x[2]) end proc, L) end proc: a := proc (n) if isprime(n) = false and isprime(add(t, t = ifac(n))) = true then n else end if end proc: seq(a(n), n = 1 .. 350); # with help from W. Edwin Clark - Emeric Deutsch, Jan 21 2009
-
Mathematica
PrimeFactorsAdded[n_] := Plus @@ Flatten[Table[ #[[1]]*#[[2]], {1}] & /@ FactorInteger[n]]; GenerateA046363[n_] := Select[Range[n], PrimeQ[PrimeFactorsAdded[ # ]] && PrimeQ[ # ] == False &]; (* GenerateA046363[100] would give all elements of this sequence below 100. - Ryan Witko (witko(AT)nyu.edu), Mar 08 2004 *) Select[Range[325], !PrimeQ[#] && PrimeQ[Total[Times@@@FactorInteger[#]]]&] (* Jayanta Basu, May 29 2013 *)
-
PARI
is(n)=if(isprime(n),return(0)); my(f=factor(n)); isprime(sum(i=1,#f~,f[i,1]*f[i,2])) \\ Charles R Greathouse IV, Sep 21 2013
Formula
Extensions
Edited by R. J. Mathar, Nov 02 2009
Comments