cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046392 Palindromes with exactly 2 distinct prime factors.

Original entry on oeis.org

6, 22, 33, 55, 77, 111, 141, 161, 202, 262, 303, 323, 393, 454, 505, 515, 535, 545, 565, 626, 707, 717, 737, 767, 818, 838, 878, 898, 939, 949, 959, 979, 989, 1111, 1441, 1661, 1991, 3113, 3223, 3443, 3883, 7117, 7447, 7997, 9119, 9229, 9449, 10001
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Intersection of A002113 and A006881.

Programs

  • Maple
    revdigs:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    f:= proc(n) local F;
      F:= ifactors(n)[2];
      if nops(F) = 2 and F[1,2]=1 and F[2,2]=1 then n fi
    end proc:
    N:=5: # for terms of up to N digits.
    Res:= 6:
    for d from 2 to N do
      if d::even then
        m:= d/2;
        Res:= Res, seq(f(n*10^m + revdigs(n)), n=10^(m-1)..10^m-1);
      else
        m:= (d-1)/2;
        Res:= Res, seq(seq(f(n*10^(m+1)+y*10^m+revdigs(n)), y=0..9), n=10^(m-1)..10^m-1);
      fi
    od:
    Res; # Robert Israel, Mar 24 2020
  • Mathematica
    pdpfQ[n_]:=Module[{idn=IntegerDigits[n]},idn==Reverse[idn] && PrimeNu[n] == PrimeOmega[n] == 2]; Select[Range[11000],pdpfQ] (* Harvey P. Dale, Dec 16 2012 *)
  • Python
    from sympy import factorint
    from itertools import product
    def pals(d, base=10): # all d-digit palindromes
        digits = "".join(str(i) for i in range(base))
        for p in product(digits, repeat=d//2):
            if d > 1 and p[0] == "0": continue
            left = "".join(p); right = left[::-1]
            for mid in [[""], digits][d%2]: yield int(left + mid + right)
    def ok(pal): f = factorint(pal); return len(f) == 2 and sum(f.values()) == 2
    print(list(filter(ok, (p for d in range(1, 5) for p in pals(d) if ok(p))))) # Michael S. Branicky, Jun 22 2021