cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046399 Smallest squarefree palindrome with exactly n distinct prime factors.

Original entry on oeis.org

1, 2, 6, 66, 858, 6006, 222222, 22444422, 244868442, 6434774346, 438024420834, 50146955964105, 2415957997595142, 495677121121776594, 22181673755737618122, 5521159517777159511255, 477552751050050157255774
Offset: 0

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

Initial terms of sequences A046392-A046398.

Examples

			a(4) = 858 = 2*3*11*13.
		

References

  • J.-P. Delahaye, Merveilleux nombres premiers ("Amazing primes"), p. 315, Pour la Science, Paris 2000.

Crossrefs

Programs

  • Mathematica
    r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[k = 1; While[r[k] != k || !SquareFreeQ[k] || Length[Select[Divisors[k], PrimeQ]] != n, k++ ]; Print[k], {n, 0, 30}] (* Ryan Propper, Sep 16 2005 *)

Extensions

Edited by N. J. A. Sloane, Dec 06 2008 at the suggestion of R. J. Mathar
a(10)-a(13) from Donovan Johnson, Oct 03 2011
a(14)-a(15) from David A. Corneth, Oct 03 2020
a(15) corrected by Daniel Suteu, Feb 05 2023
a(16) from Michael S. Branicky, Feb 08 2023

A075799 Palindromic numbers which are products of an even number of distinct primes.

Original entry on oeis.org

1, 6, 22, 33, 55, 77, 111, 141, 161, 202, 262, 303, 323, 393, 454, 505, 515, 535, 545, 565, 626, 707, 717, 737, 767, 818, 838, 858, 878, 898, 939, 949, 959, 979, 989, 1111, 1441, 1661, 1991, 2002, 2442, 3003, 3113, 3223, 3443, 3883, 4774, 5005, 5115, 6666, 7117, 7447
Offset: 1

Views

Author

Jani Melik, Oct 13 2002

Keywords

Examples

			1, 111=3*37 and 858=2*3*11*13 are palindromic and products of an even number of distinct primes.
		

Crossrefs

Cf. A046392, A002385, A069217, A032350, A030229, A075800, A075805 (first differences).

Programs

  • Maple
    test := proc(n) local d; d := convert(n,base,10); return ListTools[Reverse](d)=d and numtheory[mobius](n)=1; end; a := []; for n from 1 to 7000 do if test(n) then a := [op(a),n]; end; od; a;
  • Mathematica
    Select[Range[10000], PalindromeQ[#] && MoebiusMu[#] == 1 &] (* Paolo Xausa, Mar 10 2025 *)

Extensions

Edited by Dean Hickerson, Oct 21 2002
Showing 1-2 of 2 results.