A046497 Palindromes expressible as sum of 2 consecutive palindromes.
1, 3, 5, 7, 9, 11, 33, 55, 77, 99, 121, 212, 232, 252, 272, 292, 393, 414, 434, 454, 474, 494, 595, 616, 636, 656, 676, 696, 797, 818, 838, 858, 878, 898, 999, 2112, 2332, 2552, 2772, 2992, 3993, 4114, 4334, 4554, 4774, 4994, 5995, 6116, 6336, 6556, 6776, 6996, 7997, 8118, 8338, 8558
Offset: 1
Examples
999 = 494 + 505.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- P. De Geest, World!Of Numbers
Crossrefs
Cf. A002113.
Programs
-
Maple
ispali:= proc(n) local L; L:= convert(n, base, 10); L = ListTools:-Reverse(L) end proc: digrev:= proc(n) local L; L:= convert(n, base, 10); add(L[-i]*10^(i-1), i=1..nops(L)) end proc: N:=5; Pals:= $0..9: for d from 2 to N do q:= p; if d::even then m:= d/2; Pals:= Pals, seq(n*10^m + digrev(n), n=10^(m-1)..10^m-1); else m:= (d-1)/2; Pals:= Pals, seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1); fi od: Pals:= [Pals]: select(ispali, Pals[1..-2]+Pals[2..-1]); # Robert Israel, Nov 12 2018
-
Mathematica
palQ[n_] := Reverse[x = IntegerDigits[n]] == x; Select[Total /@ Partition[Select[Range[3500], palQ], 2, 1], palQ] (* Jayanta Basu, Jun 26 2013 *) nextPalindrome[n_]:=Module[{k=n+1},While[!PalindromeQ[k],k++]; k]; s={}; Do[If[PalindromeQ[n], sum =n + nextPalindrome[n]; If[PalindromeQ[sum],AppendTo[s, sum]]],{n,0,10000}]; s (* Amiram Eldar, Nov 10 2018 *) Select[Total/@Partition[Select[Range[0,5000],PalindromeQ],2,1],PalindromeQ] (* Harvey P. Dale, Sep 24 2021 *)
Extensions
a(1)=1 inserted by Alois P. Heinz, Nov 13 2018
Comments