A286161 Compound filter: a(n) = T(A001511(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.
1, 5, 2, 18, 2, 23, 2, 59, 7, 23, 2, 94, 2, 23, 16, 195, 2, 80, 2, 94, 16, 23, 2, 355, 7, 23, 29, 94, 2, 467, 2, 672, 16, 23, 16, 706, 2, 23, 16, 355, 2, 467, 2, 94, 67, 23, 2, 1331, 7, 80, 16, 94, 2, 302, 16, 355, 16, 23, 2, 1894, 2, 23, 67, 2422, 16, 467, 2, 94, 16, 467, 2, 2779, 2, 23, 67, 94, 16, 467, 2, 1331, 121, 23, 2, 1894, 16, 23, 16, 355, 2, 1832
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- MathWorld, Pairing Function
Programs
-
PARI
A001511(n) = (1+valuation(n,2)); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A286161(n) = (2 + ((A001511(n)+A046523(n))^2) - A001511(n) - 3*A046523(n))/2; for(n=1, 10000, write("b286161.txt", n, " ", A286161(n)));
-
Python
from sympy import factorint def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def P(n): f = factorint(n) return sorted([f[i] for i in f]) def a046523(n): x=1 while True: if P(n) == P(x): return x else: x+=1 def a001511(n): return 2 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1") def a(n): return T(a001511(n), a046523(n)) # Indranil Ghosh, May 06 2017
-
Scheme
(define (A286161 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A046523 n)) 2) (- (A001511 n)) (- (* 3 (A046523 n))) 2)))
Comments