A046642 Numbers k such that k and number of divisors d(k) are relatively prime.
1, 3, 4, 5, 7, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 100, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Mart Abel, Helena Lauer, and Ellen Redi, About the number of τ-numbers relative to polynomials with integer coefficients, Acta Comment. Univ. Tartu. Math. 25, No. 1, 107-117, 2021.
- Claudia A. Spiro, The Frequency with Which an Integral-Valued, Prime-Independent, Multiplicative or Additive Function of n Divides a Polynomial Function of n, Ph. D. Thesis, University of Illinois, Urbana-Champaign, 1981.
- Joshua Zelinsky, Tau Numbers: A Partial Proof of a Conjecture and Other Results, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.8.
Programs
-
Haskell
a046642 n = a046642_list !! (n-1) a046642_list = map (+ 1) $ elemIndices 1 a009191_list -- Reinhard Zumkeller, Aug 14 2011
-
Mathematica
Select[ Range[200], CoprimeQ[#, DivisorSigma[0, #]] &] (* Jean-François Alcover, Oct 20 2011 *)
-
PARI
is(n)=gcd(numdiv(n),n)==1 \\ Charles R Greathouse IV, Mar 27 2013
Formula
A009191(a(n)) = 1.
Comments