A046694 Ramanujan tau numbers mod 691 = sum of 11th power of divisors mod 691.
1, 667, 252, 601, 684, 171, 531, 178, 372, 168, 469, 123, 629, 385, 309, 388, 611, 55, 672, 630, 449, 491, 92, 632, 57, 106, 88, 580, 173, 185, 366, 666, 27, 538, 429, 379, 622, 456, 269, 136, 87, 280, 36, 632, 160, 556, 435, 345, 194, 14, 570, 52, 209, 652, 172, 542, 49
Offset: 1
Examples
Coefficient of x^2 in tau(x) = -24; 1^11+2^11 = 2049 = 667 mod 691 = -24 mod 691.
References
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 169, (10.6.4).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
Crossrefs
Programs
-
Maple
A046694 := proc(n) numtheory[sigma][11](n) mod 691 ; end proc: # R. J. Mathar, Feb 01 2013
-
Mathematica
a[n_] := Mod[Total[Divisors[n]^11], 691]; a /@ Range[57] (* Jean-François Alcover , Apr 22 2011 *) Table[Mod[DivisorSigma[11,n],691],{n,60}] (* Harvey P. Dale, Jun 01 2012 *)
-
PARI
a(n)=ramanujantau(n)%691 \\ Charles R Greathouse IV, Feb 08 2017
-
PARI
a(n)=sigma(n,11)%691 \\ Charles R Greathouse IV, Sep 09 2022
-
Python
from sympy import divisor_sigma def a(n): return divisor_sigma(n, 11)%691 # Indranil Ghosh, Apr 24 2017
Comments