A046732 "Norep emirps": primes with distinct digits which remain prime when reversed.
2, 3, 5, 7, 13, 17, 31, 37, 71, 73, 79, 97, 107, 149, 157, 167, 179, 347, 359, 389, 701, 709, 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 1069, 1097, 1237, 1249, 1259, 1279, 1283, 1409, 1429, 1439, 1453, 1487, 1523, 1583, 1597, 1657, 1723, 1753
Offset: 1
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..25332 (full sequence).
- Chris K. Caldwell and G. L. Honaker, Jr., 987653201, Prime Curios!.
- Martin Gardner, Patterns in primes are a clue to the strong law of small numbers, Mathematical Games, Scientific American, Vol. 243, No. 4, September, 1980.
- Carlos Rivera, Puzzle 59. Six and the nine digits primes (by Jud McCranie), The Prime Puzzles and Problems Connection.
Crossrefs
Programs
-
Maple
read(transforms): A046732 := proc(n) option remember: local d,k,p,distdig: if(n=1)then return 2: fi: p:=procname(n-1): do p:=nextprime(p): if(isprime(digrev(p)))then d:=convert(p,base,10): distdig:=true: for k from 0 to 9 do if(numboccur(d,k)>1)then distdig:=false: break: fi: od: if(distdig)then return p: fi: fi: od: end: seq(A046732(n),n=1..52); # Nathaniel Johnston, May 29 2011
-
Mathematica
Select[Prime[Range[280]], Length[Union[x = IntegerDigits[#]]] == Length[x] && PrimeQ[FromDigits[Reverse[x]]] &] (* Jayanta Basu, Jun 28 2013 *)
-
Python
from sympy import prime, isprime A046732 = [p for p in (prime(n) for n in range(1,10**3)) if len(str(p)) == len(set(str(p))) and isprime(int(str(p)[::-1]))] # Chai Wah Wu, Aug 14 2014
Extensions
More terms from Jud McCranie.
Comments