cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046736 Number of ways to place non-intersecting diagonals in convex n-gon so as to create no triangles.

Original entry on oeis.org

1, 0, 1, 1, 4, 8, 25, 64, 191, 540, 1616, 4785, 14512, 44084, 135545, 418609, 1302340, 4070124, 12785859, 40325828, 127689288, 405689020, 1293060464, 4133173256, 13246527139, 42557271268, 137032656700, 442158893833, 1429468244788
Offset: 2

Views

Author

Keywords

Examples

			a(4)=a(5)=1 because of null placement; a(6)=4 because in addition to not placing any, we might also place one between any of the 3 pairs of opposite vertices.
		

Crossrefs

Cf. A001003 (Schroeder), A001006 (Motzkin), A000108 (Catalan), A052524.

Programs

  • Magma
    A046736:= func< n | n eq 2 select 1 else (&+[Binomial(n+k-2,k)*Binomial(n-k-3, k-1)/(n-1): k in [0..Floor(n/2)-1]]) >;
    [A046736(n): n in [2..40]]; // G. C. Greubel, Jul 31 2024
    
  • Maple
    a := n->1/(n-1)*sum(binomial(n+k-2,k)*binomial(n-k-3,k-1),k=0..floor(n/2-1)); seq(a(i),i=2..30);
  • Mathematica
    (* Programs from Jean-François Alcover, Apr 14 2017: Start *)
    (* First program *)
    a[2]=1; a[n_] := Sum[Binomial[n+k-2, k]*Binomial[n-k-3, k-1], {k, 0, Floor[n/2]-1}]/(n-1);
    (* 2nd program: *)
    x*InverseSeries[Series[(y-y^2-y^3)/(1-y), {y, 0, 29}], x]
    (* 3rd program: *)
    a[2]=1; a[3]=0; a[n_] := HypergeometricPFQ[{2-n/2, 5/2-n/2, n}, {2, 4-n}, -4]; Table[a[n], {n, 2, 30}]
    (* End *)
  • PARI
    a(n)=if(n<2,0,polcoeff(serreverse((x-x^2-x^3)/(1-x)+x*O(x^n)),n-1))
    
  • SageMath
    def A046736(n): return 1 if n==2 else sum(binomial(n+k-2,k)*binomial(n-k-3, k-1)//(n-1) for k in range(n//2))
    [A046736(n) for n in range(2,41)] # G. C. Greubel, Jul 31 2024

Formula

G.f.: A(x) = Sum_{n>0} a(n)*x^(n-1) satisfies A(x) - A(x)^2 - A(x)^3 = x*(1 - A(x)).
a(n) = A052524(n-1)/(n-1)!, for n > 0.
Let g = (1-x)/(1-x-x^2) then a(m) = coeff. of x^(m-2) in g^(m-1)/(m-1).
D-finite with recurrence: 5*(n-1)*n*(37*n-95)*a(n) = 4*(n-1)*(74*n^2 -301*n +300)*a(n-1) + 8*(2*n-5)*(74*n^2 -301*n +297)*a(n-2) - 2*(n-3)*(2*n-7)*(37*n-58)*a(n-3). - Vaclav Kotesovec, Aug 10 2013
a(n) = A143363(n-3) + Sum_{k=0..n-6} ( A143363(k+1)*a(n-k-2) ). - Muhammed Sefa Saydam, Feb 14 2025 and Aug 05 2025