A054514
Number of ways to place non-crossing diagonals in convex (n+4)-gon so as to create no triangles or quadrilaterals.
Original entry on oeis.org
1, 1, 1, 5, 10, 16, 45, 109, 222, 540, 1341, 3065, 7328, 18112, 43530, 105390, 260254, 639244, 1570257, 3893805, 9669236, 24014264, 59903650, 149806494, 374982790, 940835404, 2365679689, 5955973237, 15018854005, 37935575685, 95942896837, 242954350457, 616034170069, 1563810857705, 3974000543475
Offset: 1
a(4)=5 because the octagon has the null placement and four ways to place a single diagonal.
- Eli Bagno, Estrella Eisenberg, Shulamit Reches, and Moriah Sigron, Blockwise simple permutations, arXiv:2303.13115 [math.CO], 2023.
- Eli Bagno, Estrella Eisenberg, Shulamit Reches, and Moriah Sigron, Geometric view of interval poset permutations, arXiv:2411.13193 [math.CO], 2024. See p. 10.
- D. Birmajer, J. B. Gil, M. D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015.
- Len Smiley, Generalization and some variants
-
f[x_] = InverseSeries[Series[(y - y^2 - y^4)/(1 - y), {y, 0, 38}], x];
CoefficientList[(f[x] - x)/x^4, x]
(* Second program: *)
a[n_] := Sum[Binomial[n-2j-1, n-3j-1] Binomial[n+3+j, n+2]/(n+3), {j, 0, (n-1)/3}]; Array[a, 35] (* Jean-François Alcover, Dec 08 2018, after David Callan *)
Table[HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, 1 - n/3, 4 + n}, {2, 1/2 - n/2, 1 - n/2}, -27/4], {n, 1, 40}] (* Vaclav Kotesovec, Sep 16 2023 *)
A215341
Expansion of series_reversion( x/(1+x^4*sum(k>=0, x^k)) ) / x.
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 1, 1, 5, 10, 16, 23, 53, 118, 232, 411, 813, 1718, 3568, 7012, 13925, 28603, 59533, 121878, 247915, 509136, 1057278, 2194138, 4536943, 9394145, 19552639, 40803472, 85131237, 177640486, 371426592, 778275264, 1632420197, 3425607187, 7195476245, 15134138683, 31866093569
Offset: 0
Cf.
A000108 (rev. of x/(1+1*sum(k>=1,x^k)) ),
A005043 (rev. of x/(1+x*sum(k>=1,x^k)) ),
A114997 (rev. of x/(1+x^2*sum(k>=1,x^k)) ).
Cf.
A001003 (rev. of x*(1-1*sum(k=1,N,x^k)) ),
A046736 (rev. of x*(1-x*sum(k=1,N,x^k)) ),
A054514 (rev. of x*(1-x^2*sum(k=1,N,x^k)) ),
A215342 (rev. of x*(1-x^3*sum(k=1,N,x^k)) ).
-
b:= proc(x, y, t) option remember; `if`(y0 and t in [0, 4],
b(x-1, y, 0), 0) +b(x, y-1, min(t+1, 4))))
end:
a:= n-> b(n, n, 0):
seq(a(n), n=0..50); # Alois P. Heinz, Apr 16 2013
-
InverseSeries[x/(1+x^4/(1-x)) + O[x]^50] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Mar 29 2017 *)
-
a(n):=sum(binomial(n+1,i)*binomial(n-3*i-1,n-4*i),i,0,floor(n/4))/(n+1); /* Vladimir Kruchinin, Apr 01 2019 */
-
N=66; Vec( serreverse(x/(1+x^4*sum(k=0,N,x^k))+O(x^N)) / x )
Modified definition to obtain offset 0 for combinatorial interpretation,
Joerg Arndt, Apr 16 2013
A236339
Association types in 2-dimensional algebra.
Original entry on oeis.org
1, 2, 8, 39, 212, 1232, 7492, 47082, 303336, 1992826, 13299624, 89912992, 614474252, 4238138216, 29463047072, 206234876287, 1452319244772, 10281935334928, 73138728191724, 522475643860940, 3746698673538480, 26961197787989220, 194626504416928080
Offset: 1
- J.-L. Loday and B. Vallette, Algebraic Operads, Grundlehren 346, Springer, 2012, section 13.10.4, page 544 (for the interchange law)
- S. Mac Lane, Categories for the Working Mathematician, second edition, Springer, 1978, equation (5), page 43 (also for the interchange law).
- Alois P. Heinz, Table of n, a(n) for n = 1..400
- Yu Hin (Gary) Au, Fatemeh Bagherzadeh, Murray R. Bremner, Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube, arXiv:1903.00813 [math.CO], Mar 03 2019.
- Murray R. Bremner, Diagrams representing 2-dimensional Catalan numbers for n = 2,3,4,5
- Murray Bremner, Sara Madariaga, Permutation of elements in double semigroups, arXiv:1405.2889 [math.RA], 2014-2015.
- Murray Bremner, Sara Madariaga, Permutation of elements in double semigroups, Semigroup Forum 92 (2016), no. 2, 335--360. MR3472020.
- Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
-
c := table():
c[1] := 1:
printf( "\n" ):
for n from 2 to 50 do
c[n] := 0:
for ij in combinat[composition](n,2) do
c[n] := c[n] + 2*c[ij[1]]*c[ij[2]]
od:
for ijkl in combinat[composition](n,4) do
c[n] := c[n] - c[ijkl[1]]*c[ijkl[2]]*c[ijkl[3]]*c[ijkl[4]]
od:
printf( "%2d %d \n", n, c[n] )
od:
# second Maple program:
a:= proc(n) option remember; `if`(n<3, n, (
8*(2*n-5)*(148*n-243)*(4*n-13)*(4*n-11)*a(n-3)
+16*(n-2)*(4736*n^3-31456*n^2+68444*n-48609)*a(n-2)
-32*(n-1)*(n-2)*(148*n^2-613*n+594)*a(n-1)) /
(5*n*(n-1)*(n-2)*(148*n-391)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jan 22 2014
-
max = 30; c[1] = 1; c[2] = 2; g = Sum[c[k]*x^k, {k, 1, max}]; eq = Take[Thread[CoefficientList[g^4 - 2*g^2 + g - x, x] == 0], max+1]; sol = Solve[eq] // First; Array[c, max] /. sol (* Jean-François Alcover, Jan 27 2014 *)
Rest[CoefficientList[InverseSeries[Series[x^4-2*x^2+x, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Feb 16 2014 *)
A054515
Number of ways to place non-intersecting diagonals in convex (n+2)-gon so as to create no quadrilaterals.
Original entry on oeis.org
1, 1, 2, 6, 21, 78, 301, 1198, 4888, 20340, 85986, 368239, 1594183, 6965380, 30675399, 136026759, 606848034, 2721783023, 12265670909, 55511013680, 252193872912, 1149742659556, 5258257323304, 24117924005616, 110915268468358, 511334146237807, 2362650323603539
Offset: 0
a(3) = 6 because the pentagon allows null placement and five ways to place two diagonals.
- Eli Bagno, Estrella Eisenberg, Shulamit Reches, and Moriah Sigron, Blockwise simple permutations, arXiv:2303.13115 [math.CO], 2023.
- Eli Bagno, Estrella Eisenberg, Shulamit Reches, and Moriah Sigron, Geometric view of interval poset permutations, arXiv:2411.13193 [math.CO], 2024. See pp. 3, 8.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015
- Mathilde Bouvel, Lapo Cioni, and Benjamin Izart, The interval posets of permutations seen from the decomposition tree perspective, arXiv:2110.10000 [math.CO], 2021.
- Len Smiley, Generalization and some variants, see Quad-free.
- Bridget Eileen Tenner, Interval posets for permutations, arXiv:2007.06142 [math.CO], 2020-2021.
-
read("transforms") :
taylor( (1-2*y+y^2-y^3)/(1-y),y=0,50) ;
gfun[seriestolist](%) ;
REVERT(%) ; # R. J. Mathar, Nov 04 2021
-
InverseSeries[Series[(y-2*y^2+y^3-y^4)/(1-y), {y, 0, 24}], x] (* then A(x)=[y(x)-x]/x *)
-
my(N=28, x='x+O('x^N)); Vec(serreverse((x-2*x^2+x^3-x^4)/(1-x))) \\ Hugo Pfoertner, Jan 26 2024
A143363
Number of ordered trees with n edges and having no protected vertices. A protected vertex in an ordered tree is a vertex at least 2 edges away from its leaf descendants.
Original entry on oeis.org
1, 1, 1, 3, 6, 17, 43, 123, 343, 1004, 2938, 8791, 26456, 80597, 247091, 763507, 2372334, 7413119, 23271657, 73376140, 232238350, 737638868, 2350318688, 7510620143, 24064672921, 77294975952, 248832007318, 802737926643
Offset: 0
From _Gus Wiseman_, Nov 19 2022: (Start)
The a(0) = 1 through a(4) = 6 trees with at least one leaf directly under any non-leaf node:
o (o) (oo) (ooo) (oooo)
((o)o) ((o)oo)
(o(o)) ((oo)o)
(o(o)o)
(o(oo))
(oo(o))
The a(0) = 1 through a(4) = 6 trees with at most one leaf directly under any node:
o (o) ((o)) ((o)o) (((o))o)
(o(o)) (((o)o))
(((o))) ((o)(o))
((o(o)))
(o((o)))
((((o))))
(End)
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- Gi-Sang Cheon and Louis W. Shapiro, Protected points in ordered trees, Appl. Math. Letters, 21, 2008, 516-520.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
For exactly one leaf directly under any node we have
A006013.
Allowing lone children gives
A319378.
-
p:=z^2*G^3-2*z*G^2-2*z^2*G^2+3*z*G+G+z^2*G-1-2*z=0: G:=RootOf(p,G): Gser:= series(G,z=0,33): seq(coeff(Gser,z,n),n=0..28);
-
a[n_Integer] := a[n] = Round[SeriesCoefficient[2 (x + 1 - Sqrt[x^2 - x + 1] Cos[ArcTan[(3 x Sqrt[12 x^3 - 96 x^2 - 24 x + 15])/(2 x^3 - 30 x^2 - 3 x + 2)]/3])/(3 x), {x, 0, n}]]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Apr 10 2022 *)
RecurrenceTable[{25 (n + 5) (n + 6) a[n + 5] - 10 (n + 5) (5 n + 21) a[n + 4] - 2 (77 n^2 + 613 n + 1185) a[n + 3] + 2 (50 n^2 + 253 n + 312) a[n + 2] + 4 (2 n + 1) (7 n + 9) a[n + 1] - 4 n (2 n + 1) a[n] == 0, a[0] == 1, a[1] == 1, a[2] == 1, a[3] == 3, a[4] == 6}, a[n], {n, 0, 27}] (* Vladimir Reshetnikov, Apr 11 2022 *)
ait[n_]:=ait[n]=If[n==1,{{}},Join@@Table[Select[Tuples[ait/@c],MemberQ[#,{}]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[ait[n]],{n,15}] (* Gus Wiseman, Nov 19 2022 *)
A215342
Expansion of series reversion of x*(1-x^3*sum(k>=1, x^k)).
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 1, 1, 6, 12, 19, 27, 71, 166, 329, 579, 1222, 2756, 5921, 11754, 24179, 52372, 114031, 239726, 502269, 1074961, 2333143, 5017552, 10714567, 23006558, 49861081, 108122488, 233691980, 505329915, 1097463037, 2389325284, 5199960642, 11314793335, 24663217250, 53864633059
Offset: 1
Use the Lang and the Abramowitz and Stegun links in A111785. In the A-S list of partitions of the integer n on page 831 null all partitions containing 1, 2, or 3. These correspond to the null coefficients of x^2, x^3, and x^4 in the series to be reverted and to 3-, 4-, and 5-gons not being allowed in the dissections. a(9)=6 corresponds to the A-S partitions (n=8,m=1, partition 1)=8 and (8,2,4)=4^2, and these in turn correspond to one undissected 10-gon + five ways to divide a 10-gon into two 6-gons. a(10)=12 corresponds to (9,1,1)=9 and (9,2,4)=4,5, corresponding to one undissected 11-gon + the eleven ways to divide an 11-gon into a 6-gon and 7-gon. - _Tom Copeland_, Feb 15 2014
- Vaclav Kotesovec, Table of n, a(n) for n = 1..250
- Alison Schuetz, Gwyneth Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO]
- D. Birmajer, J. B. Gil, M. D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015.
Cf.
A001003 (rev. of x*(1-1*sum(k>=1,x^k)) ),
A046736 (rev. of x*(1-x*sum(k>=1,x^k)) ),
A054514 (rev. of x*(1-x^2*sum(k>=1,x^k)) ).
Cf.
A000108 (rev. of x/(1+1*sum(k>=1,x^k)) ),
A005043 (rev. of x/(1+x*sum(k>=1,x^k)) ),
A114997 (rev. of x/(1+x^2*sum(k>=1,x^k)) ),
A215341 (rev. of x/(1+x^3*sum(k>=1,x^k)) ).
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=0; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[1-(1+x)*AGF+x*AGF^2 +x^4*AGF^5,x,j]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Mar 23 2014 *)
-
N=66; Vec(serreverse(x*(1-x^3*sum(k=1,N,x^k))+O(x^N)))
A052524
Number of ordered labeled rooted trees on n nodes with non-leaf nodes having more than two children.
Original entry on oeis.org
0, 1, 0, 6, 24, 480, 5760, 126000, 2580480, 69310080, 1959552000, 64505548800, 2292022656000, 90366525849600, 3843167789260800, 177248722210560000, 8758468152225792000, 463225965106544640000, 26058454876652470272000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Union(Z,Sequence(S,card >= 3))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[InverseSeries[Series[1 + 1/(x-1) + 2*x + x^2, {x,0,20}], x], x] * Range[0,20]! (* Vaclav Kotesovec, Jan 08 2014 *)
-
a(n)=if(n<1,0,n!*polcoeff(serreverse((x-x^2-x^3)/(1-x) + O(x^(n+2))), n))
A222763
Number of n X 2 0..1 arrays with exactly floor(nX2/2) elements unequal to at least one horizontal or antidiagonal neighbor, with new values introduced in row major 0..1 order.
Original entry on oeis.org
1, 0, 3, 4, 20, 48, 175, 512, 1719, 5400, 17776, 57420, 188656, 617176, 2033175, 6697744, 22139780, 73262232, 242931321, 806516560, 2681475048, 8925158440, 29740390672, 99196158144, 331163178475, 1106489052968, 3699881730900, 12380449027324, 41454579098852
Offset: 0
All solutions for n=3
..0..1....0..0....0..0....0..0
..0..0....0..0....0..1....1..0
..0..0....1..0....0..0....0..0
-
a:= proc(n) option remember; `if`(n<3, [1, 0, 3][n+1],
(4*(n-1)*(74*n^2-153*n+73)*a(n-1) +8*(2*n-3)*
(74*n^2-153*n+70)*a(n-2) -2*(37*n-21)*(2*n-5)*
(n-1)*a(n-3))/(5*(37*n-58)*n*(n-1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 24 2024
A365690
G.f. satisfies A(x) = 1 + x^2*A(x)^4 / (1 - x*A(x)).
Original entry on oeis.org
1, 0, 1, 1, 5, 10, 38, 101, 353, 1070, 3659, 11843, 40505, 135873, 468104, 1604375, 5576315, 19386656, 67950717, 238676813, 842797959, 2983745508, 10603445402, 37777263153, 134985354179, 483438728094, 1735527037388, 6243193190117, 22503637842423
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n-k-1, n-2*k)*binomial(n+2*k+1, k)/(n+2*k+1));
A370616
Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2) )^n.
Original entry on oeis.org
1, 0, 2, 3, 14, 35, 125, 371, 1238, 3909, 12847, 41580, 136577, 447187, 1473341, 4855703, 16053830, 53138243, 176233967, 585202261, 1945964079, 6478043120, 21588979876, 72016891508, 240452892569, 803489258285, 2686964354375, 8991840800136, 30110638705889
Offset: 0
-
Table[Sum[Binomial[-1 - k + n, -2*k + n] Binomial[-1 + k + n, k], {k, 0, n/2}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
a(n, s=2, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));
Showing 1-10 of 17 results.
Comments