1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 39, 14, 0, 1, 5, 32, 132, 212, 42, 0, 1, 6, 50, 314, 1080, 1232, 132, 0, 1, 7, 72, 615, 3440, 9450, 7492, 429, 0, 1, 8, 98, 1065, 8450, 40320, 86544, 47082, 1430, 0, 1, 9, 128, 1694, 17604, 124250, 494736, 819154, 303336, 4862, 0
Offset: 0
A372233
Coefficient of x^n in the expansion of 1 / ( (1-x) * (1-x-x^2) )^n.
Original entry on oeis.org
1, 2, 12, 77, 520, 3612, 25557, 183192, 1325808, 9666635, 70897112, 522472392, 3865669717, 28697325048, 213649228560, 1594540806612, 11926354293792, 89372808145692, 670865679851667, 5043360211505000, 37965778448487120, 286151354441445570, 2159143860124095120
Offset: 0
-
A372233 := proc(n)
add(binomial(n+k-1,k) * binomial(3*n-k-1,n-2*k),k=0..floor(n/2));
end proc:
seq(A372233(n),n=0..50) ; # R. J. Mathar, May 02 2024
-
Table[SeriesCoefficient[1/((1-x)*(1-x-x^2))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2024 *)
-
a(n, s=2, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t+u+1)*n-(s-1)*k-1, n-s*k));
A368931
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x-x^3) ).
Original entry on oeis.org
1, 2, 7, 31, 154, 819, 4560, 26244, 154874, 932074, 5698745, 35297535, 221016593, 1396717756, 8896798020, 57062237502, 368201804973, 2388587515239, 15568995139404, 101913055166811, 669678357109300, 4415837460391845, 29210203356645090
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(3*n-2*k+1, n-3*k))/(n+1);
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x-x^3))/x)
A236342
Association types in 3-dimensional algebra.
Original entry on oeis.org
1, 3, 18, 132, 1080, 9450, 86544, 819154, 7949532, 78671736, 790930728, 8055355698, 82935309996, 861772240368, 9025745922656, 95183320362093, 1009853631571878, 10771405762277094, 115438084007465376, 1242437345193084264, 13423511539998223884
Offset: 1
- J.-L. Loday and B. Vallette, Algebraic Operads, Grundlehren 346, Springer, 2012, section 13.10.4, page 544 (for the interchange law).
- S. Mac Lane, Categories for the Working Mathematician, second edition, Springer, 1978, equation (5), page 43 (also for the interchange law).
- Alois P. Heinz, Table of n, a(n) for n = 1..400
- Yu Hin (Gary) Au, Fatemeh Bagherzadeh, Murray R. Bremner, Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube, arXiv:1903.00813 [math.CO], Mar 03 2019.
- Murray Bremner, Sara Madariaga, Permutation of elements in double semigroups, arXiv:1405.2889 [math.RA], 2014-2015.
- Murray Bremner, Sara Madariaga, Permutation of elements in double semigroups, Semigroup Forum 92 (2016), no. 2, 335--360. MR3472020.
- Wikipedia, Parallelepiped
Cf.
A000108 (for 1-dimensional algebra),
A236339 (for 2-dimensional algebra).
-
MAXDEG := 24:
C[ 1 ] := 1:
for n from 2 to MAXDEG do
count := 0:
for k to 3 do
count := count +
( (-1)^(k-1) * binomial(3,k) *
add( mul( C[f], f in e ), e in combinat[composition](n,2^k) ) )
od:
print( n, count ):
C[ n ] := count
od:
-
Rest[CoefficientList[InverseSeries[Series[-x^8+3*x^4-3*x^2+x, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Feb 16 2014 *)
A300474
Number of partitions of the square resulting from a sequence of n n-sections, each of which divides any part perpendicular to any of the axes.
Original entry on oeis.org
1, 1, 8, 96, 2240, 80960, 4021248, 255704064, 19878918144, 1829788646400, 194788537180160, 23556611967336448, 3191162612827078656, 478807179615908462592, 78833945248222913495040, 14133035289273287214366720, 2740751307013005651817267200
Offset: 0
a(2) = 8:
._______. ._______. ._______. ._______.
| | | | | | | | |_______| | |
| | | | | | | | |_______| |_______|
| | | | | | | | | | |_______|
|_|_|___| |___|_|_| |_______| |_______|
._______. ._______. ._______. ._______.
| | | | | | | | | | |
|___| | | |___| |___|___| |_______|
| | | | | | | | | | |
|___|___| |___|___| |_______| |___|___|.
.
-
a:= proc(n) option remember; `if`(n<2, 1, coeff(series(
RootOf(G-x-2*G^n+G^(n^2), G), x, n^2-n+2), x, n^2-n+1))
end:
seq(a(n), n=0..16);
-
a[0] = a[1] = 1; a[n_] := Module[{G}, G[] = 0; Do[G[x] = 2 G[x]^n - G[x]^n^2 + x + O[x]^(n^2 - n + 2) // Normal, {n^2 - n + 2}];
Coefficient[G[x], x, n^2 - n + 1]];
Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Dec 29 2018, after Alois P. Heinz *)
A368932
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x-x^4) ).
Original entry on oeis.org
1, 2, 7, 30, 144, 741, 3996, 22287, 127495, 743941, 4410555, 26492349, 160875186, 986007700, 6091548256, 37894543413, 237168491610, 1492323419929, 9434943086870, 59906035386393, 381832957589226, 2442251022673595, 15670578495195870
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(3*n-3*k+1, n-4*k))/(n+1);
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x-x^4))/x)
A368933
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x-x^5) ).
Original entry on oeis.org
1, 2, 7, 30, 143, 729, 3891, 21471, 121505, 701316, 4112751, 24435424, 146773582, 889813460, 5437598036, 33459382065, 207138653334, 1289231982454, 8062548100445, 50637167131635, 319255808742145, 2019867936975125, 12819928874057325, 81603361510347675
Offset: 0
-
a(n) = sum(k=0, n\5, binomial(n+k, k)*binomial(3*n-4*k+1, n-5*k))/(n+1);
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x-x^5))/x)
A322543
Number of triadic partitions of the unit square into (2n+1) subrectangles.
Original entry on oeis.org
1, 2, 12, 96, 879, 8712, 90972, 985728, 10979577, 124937892, 1446119664, 16972881120, 201526230555, 2416309004872, 29215072931136, 355800894005760, 4360705642282569, 53744080256387478, 665667989498682936, 8281518339078928800, 103441301833577854041, 1296713265300164761632
Offset: 0
-
a:= n-> coeff(series(RootOf(G^9-2*G^3+G-x, G), x, 2*n+2), x, 2*n+1):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 14 2018
-
a[n_] := SeriesCoefficient[InverseSeries[x - 2 x^3 + x^9 + O[x]^(2n+2), x], {x, 0, 2n+1}];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 13 2019, from PARI *)
-
a(n)={polcoef(serreverse(x - 2*x^3 + x^9 + O(x^(2*n+2))), 2*n+1)} \\ Andrew Howroyd, Dec 14 2018
A368934
Expansion of (1/x) * Series_Reversion( x * (1-x)^2 * (1-x-x^2) ).
Original entry on oeis.org
1, 3, 16, 104, 751, 5789, 46656, 388377, 3313304, 28816513, 254548840, 2277498340, 20596833817, 187974816142, 1729033498416, 16012809644088, 149186508912927, 1397300099214753, 13149137686976324, 124262625068365924, 1178796712807563025
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n+k, k)*binomial(4*n-k+2, n-2*k))/(n+1);
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2*(1-x-x^2))/x)
Comments