A121988
Number of vertices of the n-th multiplihedron.
Original entry on oeis.org
0, 1, 2, 6, 21, 80, 322, 1348, 5814, 25674, 115566, 528528, 2449746, 11485068, 54377288, 259663576, 1249249981, 6049846848, 29469261934, 144293491564, 709806846980, 3506278661820, 17385618278700, 86500622296800, 431718990188850, 2160826237261692
Offset: 0
G.f. = x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 + 1348*x^7 + 5814*x^8 + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO], 2004. See p. 19.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5, pp. 1-24.
- David Callan, A combinatorial interpretation of the Catalan transform of the Catalan numbers, arXiv:1111.0996 [math.CO], 2011.
- Stefan Forcey, Convex Hull Realizations of the Multiplihedra, Theorem 3.2, p. 8, arXiv:0706.3226 [math.AT], 2007-2008.
- Stefan Forcey, Aaron Lauve, and Frank Sottile, New Hopf Structures on Binary Trees, dmtcs:2740 - Discrete Mathematics & Theoretical Computer Science, January 1, 2009, DMTCS Proceedings vol. AK, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009).
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Tian-Xiao He and Louis W. Shapiro, Row sums and alternating sums of Riordan arrays, Linear Algebra and its Applications, Volume 507, 15 October 2016, Pages 77-95.
-
a:= proc(n) option remember; `if`(n<3, n, (14*(n-1)*(2*n-3)*a(n-1)
-4*(4*n-9)*(4*n-7)*a(n-2))/ (3*n*(n-1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Oct 20 2012
-
a[0] = 0; a[n_] := a[n] = (2 n - 2)!/((n - 1)! n!) + Sum[ a[i]*a[n - i], {i, n - 1}]; Table[ a@n, {n, 0, 24}] (* Robert G. Wilson v, Jun 28 2007 *)
a[ n_] := If[ n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[ x - 2 x^2 + 2 x^3 - x^4, {x, 0, n}]], {x, 0, n}]]; (* Michael Somos, Jun 01 2014 *)
a[0] = 0; a[n_] := Binomial[2n-2, n-1]*Hypergeometric2F1[1/2, 1-n, 2-2n, 4] /n; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 31 2016 *)
-
{a(n) = if( n<1, 0, polcoeff( serreverse( x - 2*x^2 + 2*x^3 - x^4 + x * O(x^n)), n))}; /* Michael Somos, Jun 01 2014 */
A381831
Expansion of ( (1/x) * Series_Reversion( x * ((1-x) * (1-x+x^2))^3 ) )^(1/3).
Original entry on oeis.org
1, 2, 14, 133, 1456, 17306, 217066, 2827896, 37895130, 519000037, 7232429952, 102220846756, 1461817707558, 21112968248198, 307527937374182, 4512344039147420, 66634574697351360, 989569163283434676, 14769533757869187052, 221426909287107012800, 3333042591222552282784, 50353576994047154278451
Offset: 0
A381877
G.f. A(x) satisfies A(x) = C(x) / (1 - x*A(x))^4, where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 5, 36, 307, 2891, 29029, 304716, 3303712, 36708842, 415818822, 4783832314, 55743318579, 656528284027, 7802975428711, 93467830304056, 1127239608233884, 13676060532043690, 166800618473750824, 2043978275887704674, 25152767272402722288, 310703538187552229521
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+k+1, k)*binomial(5*n-5*k+3, n-k)/(n+k+1));
A127631
Square of Riordan array (1, x*c(x)) where c(x) is the g.f. of A000108.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 21, 16, 6, 1, 0, 80, 66, 30, 8, 1, 0, 322, 280, 143, 48, 10, 1, 0, 1348, 1216, 672, 260, 70, 12, 1, 0, 5814, 5385, 3150, 1344, 425, 96, 14, 1, 0, 25674, 24244, 14799, 6784, 2400, 646, 126, 16, 1
Offset: 0
Triangle begins
1;
0, 1;
0, 2, 1;
0, 6, 4, 1;
0, 21, 16, 6, 1;
0, 80, 66, 30, 8, 1;
0, 322, 280, 143, 48, 10, 1;
0, 1348, 1216, 672, 260, 70, 12, 1;
0, 5814, 5385, 3150, 1344, 425, 96, 14, 1;
0, 25674, 24244, 14799, 6784, 2400, 646, 126, 16, 1;
0, 115566, 110704, 69828, 33814, 13002, 3960, 931, 160, 18, 1;
-
[[k eq n select 1 else (k/n)*(&+[Binomial(2*j+k-1,j)*Binomial(2*n -k-j-1, n-k-j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 05 2019
-
T[n_, k_]:= If[k==n, 1, (k/n)*Sum[Binomial[2*j-k-1, j-k]*Binomial[2*n-j- 1, n-j], {j,k,n}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 05 2019 *)
-
T(n,k):=if k=n then 1 else if n=0 then 0 else (k*sum((binomial(-k+2*i-1,i-k))*(binomial(2*n-i-1,n-i)),i,k,n))/n; /* Vladimir Kruchinin, Apr 05 2019 */
-
{T(n,k) = if(k==n, 1, (k/n)*sum(j=0,n-k, binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j)))}; \\ G. C. Greubel, Apr 05 2019
-
def T(n, k):
if k == n: return 1
return (k*sum(binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j) for j in (0..n-k)))//n
[[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 05 2019
A368935
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x+x^3) ).
Original entry on oeis.org
1, 2, 7, 29, 132, 637, 3200, 16554, 87576, 471570, 2575885, 14238003, 79487023, 447540164, 2538352756, 14489355578, 83174465721, 479842193453, 2780625587824, 16178040713569, 94467163314370, 553430174678595, 3251969073086610, 19161172609833540, 113186247571818096
Offset: 0
-
a(n) = sum(k=0, n\3, (-1)^k*binomial(n+k, k)*binomial(3*n-2*k+1, n-3*k))/(n+1);
-
my(x='x+O('x^30)); Vec(serreverse(x*(1-x)*(1-x+x^3))/x) \\ Michel Marcus, Jan 10 2024
A368936
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x+x^4) ).
Original entry on oeis.org
1, 2, 7, 30, 142, 715, 3756, 20349, 112865, 637681, 3657075, 21233199, 124562708, 737197980, 4396176336, 26389742175, 159336837840, 967007923321, 5895699043010, 36093405644877, 221785663880176, 1367420967329725, 8456765007380190, 52447676008911675
Offset: 0
-
a(n) = sum(k=0, n\4, (-1)^k*binomial(n+k, k)*binomial(3*n-3*k+1, n-4*k))/(n+1);
-
my(x='x+O('x^30)); Vec(serreverse(x*(1-x)*(1-x+x^4))/x) \\ Michel Marcus, Jan 10 2024
A368937
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x+x^5) ).
Original entry on oeis.org
1, 2, 7, 30, 143, 727, 3861, 21165, 118845, 680064, 3951291, 23247874, 138229486, 829292780, 5013767772, 30516496017, 186837457296, 1149894814718, 7110026033305, 44146396259805, 275139524189497, 1720647439298395, 10793938343564655, 67905034046934225
Offset: 0
-
a(n) = sum(k=0, n\5, (-1)^k*binomial(n+k, k)*binomial(3*n-4*k+1, n-5*k))/(n+1);
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x+x^5))/x)
A381828
Expansion of ( (1/x) * Series_Reversion( x * ((1-x) * (1-x+x^2))^2 ) )^(1/2).
Original entry on oeis.org
1, 2, 10, 65, 480, 3824, 32039, 278256, 2482578, 22617830, 209540672, 1968031520, 18696064179, 179332892186, 1734451272240, 16895744042472, 165621305486976, 1632518433458400, 16170959983623314, 160888256475481560, 1607061512154585046, 16110030923830784248
Offset: 0
A381875
G.f. A(x) satisfies A(x) = C(x) / (1 - x*A(x))^2, where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 3, 13, 66, 368, 2185, 13570, 87147, 574241, 3861286, 26390591, 182798850, 1280387583, 9053335674, 64534088960, 463249047099, 3345832486407, 24296575830677, 177286818019264, 1299208549351640, 9557974679439901, 70563100013789595, 522608148884843970
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+k+1, k)*binomial(3*n-3*k+1, n-k)/(n+k+1));
A381876
G.f. A(x) satisfies A(x) = C(x) / (1 - x*A(x))^3, where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 4, 23, 156, 1167, 9311, 77710, 670294, 5928183, 53467931, 489904745, 4547296624, 42667426369, 404044679434, 3856480309376, 37062228265769, 358330619946164, 3482936427997599, 34014454418349579, 333598711996924548, 3284326412065118717, 32446900771699499147
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+k+1, k)*binomial(4*n-4*k+2, n-k)/(n+k+1));
Showing 1-10 of 14 results.
Comments