cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A121988 Number of vertices of the n-th multiplihedron.

Original entry on oeis.org

0, 1, 2, 6, 21, 80, 322, 1348, 5814, 25674, 115566, 528528, 2449746, 11485068, 54377288, 259663576, 1249249981, 6049846848, 29469261934, 144293491564, 709806846980, 3506278661820, 17385618278700, 86500622296800, 431718990188850, 2160826237261692
Offset: 0

Views

Author

Jonathan Vos Post, Jun 24 2007

Keywords

Comments

G.f. = x*c(x)*c(x*c(x)) where c(x) is the generating function of the Catalan numbers C(n). Thus a(n) is the Catalan transform of the sequence C(n-1). Reference for the definition of Catalan transform is the paper by Paul Barry. - Stefan Forcey (sforcey(AT)tnstate.edu), Aug 02 2007
A129442 is an essentially identical sequence. - R. J. Mathar, Jun 13 2008
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by putting the sequence [0, 1, 1, 2, 5, 14, 42, ...] of Catalan numbers (with 0 prepended) in the first column (k = 0) of the array and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1.
0
1 1
1 2 2
2 4 6 6
5 9 15 21 21
14 23 38 59 80 80
...
Cf. A307495.
Alternatively, the sequence can be obtained by multiplying the sequence of Catalan numbers by the array A106566. (End)

Examples

			G.f. = x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 + 1348*x^7 + 5814*x^8 + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n, (14*(n-1)*(2*n-3)*a(n-1)
          -4*(4*n-9)*(4*n-7)*a(n-2))/ (3*n*(n-1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 20 2012
  • Mathematica
    a[0] = 0; a[n_] := a[n] = (2 n - 2)!/((n - 1)! n!) + Sum[ a[i]*a[n - i], {i, n - 1}]; Table[ a@n, {n, 0, 24}] (* Robert G. Wilson v, Jun 28 2007 *)
    a[ n_] := If[ n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[ x - 2 x^2 + 2 x^3 - x^4, {x, 0, n}]], {x, 0, n}]]; (* Michael Somos, Jun 01 2014 *)
    a[0] = 0; a[n_] := Binomial[2n-2, n-1]*Hypergeometric2F1[1/2, 1-n, 2-2n, 4] /n; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 31 2016 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( x - 2*x^2 + 2*x^3 - x^4 + x * O(x^n)), n))}; /* Michael Somos, Jun 01 2014 */

Formula

a(0) = 0; a(n) = C(n-1) + Sum_{i=1..n-1} a(i)*a(n-i), where C(n) = A000108(n).
G.f.: (1-sqrt(2*sqrt(1-4x)-1))/2. a(n) = (1/n)*Sum_{k=1..n} binomial(2*n-k-1,n-1)*binomial(2k-2, k-1); a(0)=0. - Stefan Forcey (sforcey(AT)tnstate.edu), Aug 02 2007
a(n) = Sum_{k = 0..n} A106566(n,k)*A000108(k-1) with A000108(-1)=0. - Philippe Deléham, Aug 27 2007
From Vaclav Kotesovec, Oct 19 2012: (Start)
D-finite with recurrence 3*(n-1)*n*a(n) = 14*(n-1)*(2*n-3)*a(n-1) - 4*(4*n-9)*(4*n-7)*a(n-2).
a(n) ~ 2^(4*n-5/2)/(sqrt(Pi)*3^(n-1/2)*n^(3/2)). (End)
G.f.: A(x) satisfies A(x)=x*(1+A(x))/((1-A(x))*(1+A(x)^3)). - Vladimir Kruchinin, Jun 01 2014
G.f. is series reversion of (x - x^2) * (1 - x + x^2) = x - 2*x^2 + 2*x^3 - x^4. - Michael Somos, Jun 01 2014
From Peter Bala, Aug 22 2024: (Start)
G.f. A(x) = 1 - 1/c(x*c(x)), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
Sum_{n >= 1} a(n)*y^n = x*c(x), where y = x*(1 - x). (End)

Extensions

More terms from Robert G. Wilson v, Jun 28 2007

A381831 Expansion of ( (1/x) * Series_Reversion( x * ((1-x) * (1-x+x^2))^3 ) )^(1/3).

Original entry on oeis.org

1, 2, 14, 133, 1456, 17306, 217066, 2827896, 37895130, 519000037, 7232429952, 102220846756, 1461817707558, 21112968248198, 307527937374182, 4512344039147420, 66634574697351360, 989569163283434676, 14769533757869187052, 221426909287107012800, 3333042591222552282784, 50353576994047154278451
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((serreverse(x*((1-x)*(1-x+x^2))^3)/x)^(1/3))

Formula

G.f. A(x) satisfies A(x) = C(x*A(x)^2) / (1 - x*A(x)^3), where C(x) is the g.f. of A000108.
a(n) = Sum_{k=0..n} binomial(3*n+k+1,k) * binomial(4*n-2*k,n-k)/(3*n+k+1).

A381877 G.f. A(x) satisfies A(x) = C(x) / (1 - x*A(x))^4, where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 5, 36, 307, 2891, 29029, 304716, 3303712, 36708842, 415818822, 4783832314, 55743318579, 656528284027, 7802975428711, 93467830304056, 1127239608233884, 13676060532043690, 166800618473750824, 2043978275887704674, 25152767272402722288, 310703538187552229521
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k+1, k)*binomial(5*n-5*k+3, n-k)/(n+k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+k+1,k) * binomial(5*n-5*k+3,n-k)/(n+k+1).
a(n) = binomial(3 + 5*n, n)*hypergeom([-3/4-n, -1/2-n, -1/4-n, -n, 1+n], [-3/5-n, -2/5-n, -1/5-n, 1/5-n], 2^8/5^5)/(1 + n). - Stefano Spezia, Mar 09 2025

A127631 Square of Riordan array (1, x*c(x)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 21, 16, 6, 1, 0, 80, 66, 30, 8, 1, 0, 322, 280, 143, 48, 10, 1, 0, 1348, 1216, 672, 260, 70, 12, 1, 0, 5814, 5385, 3150, 1344, 425, 96, 14, 1, 0, 25674, 24244, 14799, 6784, 2400, 646, 126, 16, 1
Offset: 0

Views

Author

Paul Barry, Jan 20 2007

Keywords

Comments

Square of A106566. Row sums are A127632.

Examples

			Triangle begins
  1;
  0,      1;
  0,      2,      1;
  0,      6,      4,     1;
  0,     21,     16,     6,     1;
  0,     80,     66,    30,     8,     1;
  0,    322,    280,   143,    48,    10,    1;
  0,   1348,   1216,   672,   260,    70,   12,   1;
  0,   5814,   5385,  3150,  1344,   425,   96,  14,   1;
  0,  25674,  24244, 14799,  6784,  2400,  646, 126,  16,  1;
  0, 115566, 110704, 69828, 33814, 13002, 3960, 931, 160, 18, 1;
		

Crossrefs

Programs

  • Magma
    [[k eq n select 1 else (k/n)*(&+[Binomial(2*j+k-1,j)*Binomial(2*n -k-j-1, n-k-j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 05 2019
    
  • Mathematica
    T[n_, k_]:= If[k==n, 1, (k/n)*Sum[Binomial[2*j-k-1, j-k]*Binomial[2*n-j- 1, n-j], {j,k,n}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 05 2019 *)
  • Maxima
    T(n,k):=if k=n then 1 else if n=0 then 0 else (k*sum((binomial(-k+2*i-1,i-k))*(binomial(2*n-i-1,n-i)),i,k,n))/n; /* Vladimir Kruchinin, Apr 05 2019 */
    
  • PARI
    {T(n,k) = if(k==n, 1, (k/n)*sum(j=0,n-k, binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j)))}; \\ G. C. Greubel, Apr 05 2019
    
  • Sage
    def T(n, k):
       if k == n: return 1
       return (k*sum(binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j) for j in (0..n-k)))//n
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 05 2019

Formula

Riordan array (1, x*c(x)*c(x*c(x))), where c(x) is the g.f. of A000108.
T(n+1,1) = A129442(n) = A121988(n+1). - Philippe Deléham, Feb 27 2013
T(n,k) = (k/n)*Sum_{i=k..n} C(2*i-k-1,i-k)*C(2*n-i-1,n-i), T(n,n)=1. - Vladimir Kruchinin, Apr 05 2019

A368935 Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x+x^3) ).

Original entry on oeis.org

1, 2, 7, 29, 132, 637, 3200, 16554, 87576, 471570, 2575885, 14238003, 79487023, 447540164, 2538352756, 14489355578, 83174465721, 479842193453, 2780625587824, 16178040713569, 94467163314370, 553430174678595, 3251969073086610, 19161172609833540, 113186247571818096
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(n+k, k)*binomial(3*n-2*k+1, n-3*k))/(n+1);
    
  • PARI
    my(x='x+O('x^30)); Vec(serreverse(x*(1-x)*(1-x+x^3))/x) \\ Michel Marcus, Jan 10 2024

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (-1)^k * binomial(n+k,k) * binomial(3*n-2*k+1,n-3*k).

A368936 Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x+x^4) ).

Original entry on oeis.org

1, 2, 7, 30, 142, 715, 3756, 20349, 112865, 637681, 3657075, 21233199, 124562708, 737197980, 4396176336, 26389742175, 159336837840, 967007923321, 5895699043010, 36093405644877, 221785663880176, 1367420967329725, 8456765007380190, 52447676008911675
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, (-1)^k*binomial(n+k, k)*binomial(3*n-3*k+1, n-4*k))/(n+1);
    
  • PARI
    my(x='x+O('x^30)); Vec(serreverse(x*(1-x)*(1-x+x^4))/x) \\ Michel Marcus, Jan 10 2024

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} (-1)^k * binomial(n+k,k) * binomial(3*n-3*k+1,n-4*k).

A368937 Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x+x^5) ).

Original entry on oeis.org

1, 2, 7, 30, 143, 727, 3861, 21165, 118845, 680064, 3951291, 23247874, 138229486, 829292780, 5013767772, 30516496017, 186837457296, 1149894814718, 7110026033305, 44146396259805, 275139524189497, 1720647439298395, 10793938343564655, 67905034046934225
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, (-1)^k*binomial(n+k, k)*binomial(3*n-4*k+1, n-5*k))/(n+1);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x+x^5))/x)

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} (-1)^k * binomial(n+k,k) * binomial(3*n-4*k+1,n-5*k).

A381828 Expansion of ( (1/x) * Series_Reversion( x * ((1-x) * (1-x+x^2))^2 ) )^(1/2).

Original entry on oeis.org

1, 2, 10, 65, 480, 3824, 32039, 278256, 2482578, 22617830, 209540672, 1968031520, 18696064179, 179332892186, 1734451272240, 16895744042472, 165621305486976, 1632518433458400, 16170959983623314, 160888256475481560, 1607061512154585046, 16110030923830784248
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((serreverse(x*((1-x)*(1-x+x^2))^2)/x)^(1/2))

Formula

G.f. A(x) satisfies A(x) = C(x*A(x)) / (1 - x*A(x)^2), where C(x) is the g.f. of A000108.
a(n) = Sum_{k=0..n} binomial(2*n+k+1,k) * binomial(3*n-2*k,n-k)/(2*n+k+1).
D-finite with recurrence +432*n*(n-1)*(n-2)*(2*n+1)*(2*n-1)*(2*n-3)*(262261060139434887136491*n -880264534325728808928710)*a(n) +24*(n-1)*(n-2)*(2*n-1)*(2*n-3)*(9441398165019655936913676*n^3 -1563359509176097527827297363*n^2 +8122005300033248841454135898*n -10005843136737488906545668303)*a(n-1) -8*(n-2)*(2*n-3)*(26904862014415612504704360259*n^5 -439294650192331167438487778367*n^4 +2462557164881954865201862193560*n^3 -6116391863054255517662202621591*n^2 +6730597164009721987374566778403*n -2508886036978141982914230533400)*a(n-2) +2*(3280856375160701992555505608813*n^7 -60505233834440544774094319915261*n^6 +458650706405377012453301766859297*n^5 -1843996542698657351167896639498197*n^4 +4199211312282774397146042070543498*n^3 -5283107978583820687249123910721062*n^2 +3195330463869279708956264243293272*n -571272270914692694572799416918200)*a(n-3) +3*(-10499174187769013704183946812135*n^7 +189831332911960443054698384732480*n^6 -1395267797131742288585801071743534*n^5 +5221938509132769354051685228032464*n^4 -9839826026184653630837080778918103*n^3 +6229383740555425356174546560814416*n^2 +6216439623275682391743799709941612*n -8390747283534155728971424365124320)*a(n-4) -112*(7*n-31)*(7*n-32) *(2094251874056865218841652*n -5622141652266976856940223)*(7*n-29)*(7*n-26) *(7*n-30)*(7*n-27)*a(n-5)=0. - R. J. Mathar, Mar 10 2025

A381875 G.f. A(x) satisfies A(x) = C(x) / (1 - x*A(x))^2, where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 3, 13, 66, 368, 2185, 13570, 87147, 574241, 3861286, 26390591, 182798850, 1280387583, 9053335674, 64534088960, 463249047099, 3345832486407, 24296575830677, 177286818019264, 1299208549351640, 9557974679439901, 70563100013789595, 522608148884843970
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k+1, k)*binomial(3*n-3*k+1, n-k)/(n+k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+k+1,k) * binomial(3*n-3*k+1,n-k)/(n+k+1).
a(n) = binomial(1 + 3*n, n)*hypergeom([-1/2-n, -n, 1+n], [-1/3-n, 1/3-n], 2^2/3^3)/(1 + n). - Stefano Spezia, Mar 09 2025

A381876 G.f. A(x) satisfies A(x) = C(x) / (1 - x*A(x))^3, where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 4, 23, 156, 1167, 9311, 77710, 670294, 5928183, 53467931, 489904745, 4547296624, 42667426369, 404044679434, 3856480309376, 37062228265769, 358330619946164, 3482936427997599, 34014454418349579, 333598711996924548, 3284326412065118717, 32446900771699499147
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k+1, k)*binomial(4*n-4*k+2, n-k)/(n+k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+k+1,k) * binomial(4*n-4*k+2,n-k)/(n+k+1).
a(n) = binomial(2 + 4*n, n)*hypergeom([-2/3-n, -1/3-n, -n, 1+n], [-1/2-n, -1/4-n, 1/4-n], 3^3/2^8)/(1 + n). - Stefano Spezia, Mar 09 2025
Showing 1-10 of 14 results. Next