cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A007317 Binomial transform of Catalan numbers.

Original entry on oeis.org

1, 2, 5, 15, 51, 188, 731, 2950, 12235, 51822, 223191, 974427, 4302645, 19181100, 86211885, 390248055, 1777495635, 8140539950, 37463689775, 173164232965, 803539474345, 3741930523740, 17481709707825, 81912506777200, 384847173838501, 1812610804416698
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A002212 (the restricted hexagonal polyominoes with n cells). Number of Schroeder paths (i.e., consisting of steps U=(1,1),D=(1,-1),H=(2,0) and never going below the x-axis) from (0,0) to (2n-2,0), with no peaks at even level. Example: a(3)=5 because among the six Schroeder paths from (0,0) to (4,0) only UUDD has a peak at an even level. - Emeric Deutsch, Dec 06 2003
Number of binary trees of weight n where leaves have positive integer weights. Non-commutative Non-associative version of partitions of n. - Michael Somos, May 23 2005
Appears also as the number of Euler trees with total weight n (associated with even switching class of matrices of order 2n). - David Garber, Sep 19 2005
Number of symmetric hex trees with 2n-1 edges; also number of symmetric hex trees with 2n-2 edges. A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a median child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read reference). A hex tree is symmetric if it is identical with its reflection in a bisector through the root. - Emeric Deutsch, Dec 19 2006
The Hankel transform of [1, 2, 5, 15, 51, 188, ...] is [1, 1, 1, 1, 1, ...], see A000012 ; the Hankel transform of [2, 5, 15, 51, 188, 731, ...] is [2, 5, 13, 34, 89, ...], see A001519. - Philippe Deléham, Dec 19 2006
a(n) = number of 321-avoiding partitions of [n]. A partition is 321-avoiding if the permutation obtained from its canonical form (entries in each block listed in increasing order and blocks listed in increasing order of their first entries) is 321-avoiding. For example, the only partition of [5] that fails to be 321-avoiding is 15/24/3 because the entries 5,4,3 in the permutation 15243 form a 321 pattern. - David Callan, Jul 22 2008
The sequence 1,1,2,5,15,51,188,... has Hankel transform A001519. - Paul Barry, Jan 13 2009
From Gary W. Adamson, May 17 2009: (Start)
Equals INVERT transform of A033321: (1, 1, 2, 6, 21, 79, 311, ...).
Equals INVERTi transform of A002212: (1, 3, 10, 36, 137, ...).
Convolved with A026378, (1, 4, 17, 75, 339, ...) = A026376: (1, 6, 30, 144, ...)
(End)
a(n) is the number of vertices of the composihedron CK(n). The composihedra are a sequence of convex polytopes used to define maps of certain homotopy H-spaces. They are cellular quotients of the multiplihedra and cellular covers of the cubes. - Stefan Forcey (sforcey(AT)gmail.com), Dec 17 2009
a(n) is the number of Motzkin paths of length n-1 in which the (1,0)-steps at level 0 come in 2 colors and those at a higher level come in 3 colors. Example: a(4)=15 because we have 2^3 = 8 paths of shape UHD, 2 paths of shape HUD, 2 paths of shape UDH, and 3 paths of shape UHD; here U=(1,1), H=(1,0), and D=(1,-1). - Emeric Deutsch, May 02 2011
REVERT transform of (1, 2, -3, 5, -8, 13, -21, 34, ... ) where the entries are Fibonacci numbers, A000045. Equivalently, coefficients in the series reversion of x(1-x)/(1+x-x^2). This means that the substitution of the gf (1-x-(1-6x+5x^2)^(1/2))/(2(1-x)) for x in x(1-x)/(1+x-x^2) will simplify to x. - David Callan, Nov 11 2012
The number of plane trees with nodes that have positive integer weights and whose total weight is n. - Brad R. Jones, Jun 12 2014
From Tom Copeland, Nov 02 2014: (Start)
Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x)= [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).
Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)].
Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).
BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)] = (x-x^2) / (1 + x - x^2).
Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).
Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1].
(End)
Starting with offset 0, a(n) is also the number of Schröder paths of semilength n avoiding UH (an up step directly followed by a long horizontal step). Example: a(2)=5 because among the six possible Schröder paths of semilength 2 only UHD contains UH. - Valerie Roitner, Jul 23 2020

Examples

			a(3)=5 since {3, (1+2), (1+(1+1)), (2+1), ((1+1)+1)} are the five weighted binary trees of weight 3.
G.f. = x + 2*x^2 + 5*x^3 + 15*x^4 + 51*x^5 + 188*x^6 + 731*x^7 + 2950*x^8 + 12235*x^9 + ... _Michael Somos_, Jan 17 2018
		

References

  • J. Brunvoll et al., Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298, Eq. 15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A181768 for another version. - N. J. A. Sloane, Nov 12 2010
First column of triangle A104259. Row sums of absolute values of A091699.
Number of vertices of multiplihedron A121988.
m-th binomial transform of the Catalan numbers: A126930 (m = -2), A005043 (m = -1), A000108 (m = 0), A064613 (m = 2), A104455 (m = 3), A104498 (m = 4) and A154623 (m = 5).

Programs

  • Maple
    G := (1-sqrt(1-4*z/(1-z)))*1/2: Gser := series(G, z = 0, 30): seq(coeff(Gser, z, n), n = 1 .. 26); # Emeric Deutsch, Aug 12 2007
    seq(round(evalf(JacobiP(n-1,1,-n-1/2,9)/n,99)),n=1..25); # Peter Luschny, Sep 23 2014
  • Mathematica
    Rest@ CoefficientList[ InverseSeries[ Series[(y - y^2)/(1 + y - y^2), {y, 0, 26}], x], x] (* then A(x)=y(x); note that InverseSeries[Series[y-y^2, {y, 0, 24}], x] produces A000108(x) *) (* Len Smiley, Apr 10 2000 *)
    Range[0, 25]! CoefficientList[ Series[ Exp[ 3x] (BesselI[0, 2x] - BesselI[1, 2x]), {x, 0, 25}], x] (* Robert G. Wilson v, Apr 15 2011 *)
    a[n_] := Sum[ Binomial[n, k]*CatalanNumber[k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 07 2012 *)
    Rest[CoefficientList[Series[3/2 - (1/2) Sqrt[(1 - 5 x)/(1 - x)], {x, 0, 40}], x]] (* Vincenzo Librandi, Nov 03 2014 *)
    Table[Hypergeometric2F1[1/2, -n+1, 2, -4], {n, 1, 30}] (* Vaclav Kotesovec, May 12 2022 *)
  • PARI
    {a(n) = my(A); if( n<2, n>0, A=vector(n); for(j=1,n, A[j] = 1 + sum(k=1,j-1, A[k]*A[j-k])); A[n])}; /* Michael Somos, May 23 2005 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( (x - x^2) / (1 + x - x^2) + x * O(x^n)), n))}; /* Michael Somos, May 23 2005 */
    
  • PARI
    /* Offset = 0: */ {a(n)=local(A=1+x);for(i=1,n, A=sum(m=0,n, x^m*sum(k=0,m,A^k)+x*O(x^n))); polcoeff(A,n)} \\ Paul D. Hanna

Formula

(n+2)*a(n+2) = (6n+4)*a(n+1) - 5n*a(n).
G.f.: 3/2-(1/2)*sqrt((1-5*x)/(1-x)) [Gessel-Kim]. - N. J. A. Sloane, Jul 05 2014
G.f. for sequence doubled: (1/(2*x))*(1+x-(1-x)^(-1)*(1-x^2)^(1/2)*(1-5*x^2)^(1/2)).
a(n) = hypergeom([1/2, -n], [2], -4), n=0, 1, 2...; Integral representation as n-th moment of a positive function on a finite interval of the positive half-axis: a(n)=int(x^n*sqrt((5-x)/(x-1))/(2*Pi), x=1..5), n=0, 1, 2... This representation is unique. - Karol A. Penson, Sep 24 2001
a(1)=1, a(n)=1+sum(i=1, n-1, a(i)*a(n-i)). - Benoit Cloitre, Mar 16 2004
a(n) = Sum_{k=0..n} (-1)^k*3^(n-k)*binomial(n, k)*binomial(k, floor(k/2)) [offset 0]. - Paul Barry, Jan 27 2005
G.f. A(x) satisfies 0=f(x, A(x)) where f(x, y)=x-(1-x)(y-y^2). - Michael Somos, May 23 2005
G.f. A(x) satisfies 0=f(x, A(x), A(A(x))) where f(x, y, z)=x(z-z^2)+(x-1)y^2 . - Michael Somos, May 23 2005
G.f. (for offset 0): (-1+x+(1-6*x+5*x^2)^(1/2))/(2*(-x+x^2)).
G.f. =z*c(z/(1-z))/(1-z) = 1/2 - (1/2)sqrt(1-4z/(1-z)), where c(z)=(1-sqrt(1-4z))/(2z) is the Catalan function (follows from Michael Somos' first comment). - Emeric Deutsch, Aug 12 2007
G.f.: 1/(1-2x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-.... (continued fraction). - Paul Barry, Apr 19 2009
a(n) = Sum_{k, 0<=k<=n} A091965(n,k)*(-1)^k. - Philippe Deléham, Nov 28 2009
E.g.f.: exp(3x)*(I_0(2x)-I_1(2x)), where I_k(x) is a modified Bessel function of the first kind. - Emanuele Munarini, Apr 15 2011
If we prefix sequence with an additional term a(0)=1, g.f. is (3-3*x-sqrt(1-6*x+5*x^2))/(2*(1-x)). [See Kim, 2011] - N. J. A. Sloane, May 13 2011
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
2, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 1, 2, 1, 0, 0, ...
1, 1, 1, 2, 1, 0, ...
1, 1, 1, 1, 2, 1, ...
1, 1, 1, 1, 1, 2, ...
... (End)
G.f. satisfies: A(x) = Sum_{n>=0} x^n * (1 - A(x)^(n+1))/(1 - A(x)); offset=0. - Paul D. Hanna, Nov 07 2011
G.f.: 1/x - 1/x/Q(0), where Q(k)= 1 + (4*k+1)*x/((1-x)*(k+1) - x*(1-x)*(2*k+2)*(4*k+3)/(x*(8*k+6)+(2*k+3)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013
G.f.: (1-x - (1-5*x)*G(0))/(2*x*(1-x)), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 25 2013
Asymptotics (for offset 0): a(n) ~ 5^(n+3/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 28 2013
G.f.: G(0)/(1-x), where G(k) = 1 + (4*k+1)*x/((k+1)*(1-x) - 2*x*(1-x)*(k+1)*(4*k+3)/(2*x*(4*k+3) + (2*k+3)*(1-x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 29 2014
a(n) = JacobiP(n-1,1,-n-1/2,9)/n. - Peter Luschny, Sep 23 2014
0 = +a(n)*(+25*a(n+1) -50*a(n+2) +15*a(n+3)) +a(n+1)*(-10*a(n+1) +31*a(n+2) -14*a(n+3)) +a(n+2)*(+2*a(n+2) +a(n+3)) for all n in Z. - Michael Somos, Jan 17 2018
a(n+1) = (2/Pi) * Integral_{x = -1..1} (m + 4*x^2)^n*sqrt(1 - x^2) dx at m = 1. In general, the integral, qua sequence in n, gives the m-th binomial transform of the Catalan numbers. - Peter Bala, Jan 26 2020

A106566 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, 1, 1, 1, 1, 1, 1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
Offset: 0

Views

Author

Philippe Deléham, May 30 2005

Keywords

Comments

Catalan convolution triangle; g.f. for column k: (x*c(x))^k with c(x) g.f. for A000108 (Catalan numbers).
Riordan array (1, xc(x)), where c(x) the g.f. of A000108; inverse of Riordan array (1, x*(1-x)) (see A109466).
Diagonal sums give A132364. - Philippe Deléham, Nov 11 2007

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,  1;
  0,   5,   5,  3,  1;
  0,  14,  14,  9,  4,  1;
  0,  42,  42, 28, 14,  5, 1;
  0, 132, 132, 90, 48, 20, 6, 1;
From _Paul Barry_, Sep 28 2009: (Start)
Production array is
  0, 1,
  0, 1, 1,
  0, 1, 1, 1,
  0, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1 (End)
		

Crossrefs

The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
See also A009766, A033184, A059365 for other versions.
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    A106566:= func< n,k | n eq 0 select 1 else (k/n)*Binomial(2*n-k-1, n-k) >;
    [A106566(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 06 2021
    
  • Maple
    A106566 := proc(n,k)
        if n = 0 then
            1;
        elif k < 0 or k > n then
            0;
        else
            binomial(2*n-k-1,n-k)*k/n ;
        end if;
    end proc: # R. J. Mathar, Mar 01 2015
  • Mathematica
    T[n_, k_] := Binomial[2n-k-1, n-k]*k/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2017 *)
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, #(1-Sqrt[1-4#])/(2#)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
  • PARI
    {T(n, k) = if( k<=0 || k>n, n==0 && k==0, binomial(2*n - k, n) * k/(2*n - k))}; /* Michael Somos, Oct 01 2022 */
  • Sage
    def A106566(n, k): return 1 if (n==0) else (k/n)*binomial(2*n-k-1, n-k)
    flatten([[A106566(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 06 2021
    

Formula

T(n, k) = binomial(2n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0.
T(0, 0) = 1; T(n, 0) = 0 if n > 0; T(0, k) = 0 if k > 0; for k > 0 and n > 0: T(n, k) = Sum_{j>=0} T(n-1, k-1+j).
Sum_{j>=0} T(n+j, 2j) = binomial(2n-1, n), n > 0.
Sum_{j>=0} T(n+j, 2j+1) = binomial(2n-2, n-1), n > 0.
Sum_{k>=0} (-1)^(n+k)*T(n, k) = A064310(n). T(n, k) = (-1)^(n+k)*A099039(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for x = 0,1,2,3,4,5,6,7,8 respectively.
Sum_{k>=0} T(n, k)*x^(n-k) = C(x, n); C(x, n) are the generalized Catalan numbers.
Sum_{j=0..n-k} T(n+k,2*k+j) = A039599(n,k).
Sum_{j>=0} T(n,j)*binomial(j,k) = A039599(n,k).
Sum_{k=0..n} T(n,k)*A000108(k) = A127632(n).
Sum_{k=0..n} T(n,k)*(x+1)^k*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x= 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Aug 25 2007
Sum_{k=0..n} T(n,k)*A000108(k-1) = A121988(n), with A000108(-1)=0. - Philippe Deléham, Aug 27 2007
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Oct 27 2007
T(n,k)*2^(n-k) = A110510(n,k); T(n,k)*3^(n-k) = A110518(n,k). - Philippe Deléham, Nov 11 2007
Sum_{k=0..n} T(n,k)*A000045(k) = A109262(n), A000045: Fibonacci numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A000129(k) = A143464(n), A000129: Pell numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A100335(k) = A002450(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A100334(k) = A001906(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A099322(k) = A015565(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A106233(k) = A003462(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A151821(k+1) = A100320(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A082505(k+1) = A144706(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A000045(2k+2) = A026671(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A122367(k) = A026726(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A008619(k) = A000958(n+1). - Philippe Deléham, Nov 15 2009
Sum_{k=0..n} T(n,k)*A027941(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
G.f.: Sum_{n>=0, k>=0} T(n, k)*x^k*z^n = 1/(1 - x*z*c(z)) where c(z) the g.f. of A000108. - Michael Somos, Oct 01 2022

Extensions

Formula corrected by Philippe Deléham, Oct 31 2008
Corrected by Philippe Deléham, Sep 17 2009
Corrected by Alois P. Heinz, Aug 02 2012

A158825 Square array of coefficients in the successive iterations of x*C(x) = (1-sqrt(1-4*x))/2 where C(x) is the g.f. of the Catalan numbers (A000108); read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 21, 14, 1, 5, 20, 54, 80, 42, 1, 6, 30, 110, 260, 322, 132, 1, 7, 42, 195, 640, 1310, 1348, 429, 1, 8, 56, 315, 1330, 3870, 6824, 5814, 1430, 1, 9, 72, 476, 2464, 9380, 24084, 36478, 25674, 4862, 1, 10, 90, 684, 4200, 19852, 67844, 153306, 199094, 115566, 16796
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009, Mar 29 2009

Keywords

Examples

			Square array of coefficients in iterations of x*C(x) begins:
  1,  1,   2,    5,    14,      42,      132,       429,       1430, ... A000108;
  1,  2,   6,   21,    80,     322,     1348,      5814,      25674, ... A121988;
  1,  3,  12,   54,   260,    1310,     6824,     36478,     199094, ... A158826;
  1,  4,  20,  110,   640,    3870,    24084,    153306,     993978, ... A158827;
  1,  5,  30,  195,  1330,    9380,    67844,    500619,    3755156, ... A158828;
  1,  6,  42,  315,  2464,   19852,   163576,   1372196,   11682348, ...;
  1,  7,  56,  476,  4200,   38052,   351792,   3305484,   31478628, ...;
  1,  8,  72,  684,  6720,   67620,   693048,   7209036,   75915708, ...;
  1,  9,  90,  945, 10230,  113190,  1273668,  14528217,  167607066, ...;
  1, 10, 110, 1265, 14960,  180510,  2212188,  27454218,  344320262, ...;
  1, 11, 132, 1650, 21164,  276562,  3666520,  49181418,  666200106, ...;
  1, 12, 156, 2106, 29120,  409682,  5841836,  84218134, 1225314662, ...;
  1, 13, 182, 2639, 39130,  589680,  8999172, 138755799, 2157976392, ...;
  1, 14, 210, 3255, 51520,  827960, 13464752, 221101608, 3660331064, ...;
  1, 15, 240, 3960, 66640, 1137640, 19640032, 342179672, 6007747368, ...;
  1, 16, 272, 4760, 84864, 1533672, 28012464, 516105720, 9578580504, ...;
ILLUSTRATE ITERATIONS.
       Let G(x) = x*C(x), then the first few iterations of G(x) are:
           G(x) = x +   x^2 +  2*x^3 +   5*x^4 +  14*x^5 + ...;
        G(G(x)) = x + 2*x^2 +  6*x^3 +  21*x^4 +  80*x^5 + ...;
     G(G(G(x))) = x + 3*x^2 + 12*x^3 +  54*x^4 + 260*x^5 + ...;
  G(G(G(G(x)))) = x + 4*x^2 + 20*x^3 + 110*x^4 + 640*x^5 + ...;
...
RELATED TRIANGLES.
The g.f. of column n is (g.f. of row n of A158830)/(1-x)^n
where triangle A158830 begins: 1;
      1,       0;
      2,       0,        0;
      5,       1,        0,        0;
     14,      10,        0,        0,       0;
     42,      70,        8,        0,       0,       0;
    132,     424,      160,        4,       0,       0,     0;
    429,    2382,     1978,      250,       1,       0,     0,   0;
   1430,   12804,    19508,     6276,     302,       0,     0,   0, 0;
   4862,   66946,   168608,   106492,   15674,     298,     0,   0, 0, 0;
  16796,  343772,  1337684,  1445208,  451948,   33148,   244,   0, 0, 0, 0;
  58786, 1744314, 10003422, 16974314, 9459090, 1614906, 61806, 162, 0, 0, 0, 0;
  ...
Triangle A158835 transforms one diagonal into the next:
       1;
       1,      1;
       4,      2,     1;
      27,     11,     3,    1;
     254,     94,    21,    4,   1;
    3062,   1072,   217,   34,   5,  1;
   45052,  15212,  2904,  412,  50,  6, 1;
  783151, 257777, 47337, 6325, 695, 69, 7, 1; ...
so that:
  A158835 * A158831 = A158832;
  A158835 * A158832 = A158833;
  A158835 * A158833 = A158834;
where the diagonals start:
  A158831 = [1, 1,  6,  54,  640,  9380,  163576,  3305484, ...];
  A158832 = [1, 2, 12, 110, 1330, 19852,  351792,  7209036, ...];
  A158833 = [1, 3, 20, 195, 2464, 38052,  693048, 14528217, ...];
  A158834 = [1, 4, 30, 315, 4200, 67620, 1273668, 27454218, ...].
		

Crossrefs

Antidiagonal sums: A158829.
Related triangles: A158830, A158835.
Variant: A122888.

Programs

  • Mathematica
    Clear[row]; nmax = 12;
    row[n_]:= row[n]= CoefficientList[Nest[(1-Sqrt[1-4#])/2&, x, n] + O[x]^(nmax+1), x] //Rest;
    T[n_, k_]:= row[n][[k]];
    Table[T[n-k+1, k], {n, nmax}, {k, n}]//Flatten (* Jean-François Alcover, Jul 13 2018, updated Aug 09 2018 *)
  • PARI
    {T(n,k)= local(F=serreverse(x-x^2+O(x^(k+2))), G=x);
    for(i=1, n, G=subst(F,x,G)); polcoeff(G,k)}

Formula

G.f. of column n = (g.f. of row n of A158830)/(1-x)^n.
Row k equals the first column of the k-th matrix power of Catalan triangle A033184; thus triangle A033184 transforms row n into row n+1 of this array (A158825). - Paul D. Hanna, Mar 30 2009
From G. C. Greubel, Apr 01 2021: (Start)
T(n, 1) = A000012(n), T(n, 2) = A000027(n).
T(n, 3) = A002378(n), T(n, 4) = A160378(n+1). (End)

A127632 Expansion of c(x*c(x)), where c(x) is the g.f. for A000108.

Original entry on oeis.org

1, 1, 3, 11, 44, 185, 804, 3579, 16229, 74690, 347984, 1638169, 7780876, 37245028, 179503340, 870374211, 4243141332, 20786340271, 102275718924, 505235129250, 2504876652190, 12459922302900, 62167152967680, 311040862133625
Offset: 0

Views

Author

Paul Barry, Jan 20 2007, Jan 25 2007

Keywords

Comments

Old name was: Expansion of 1/(1 - x*c(x) * c(x*c(x))), where c(x) is the g.f. of A000108.
Hankel transform appears to be A075845.
Catalan transform of Catalan numbers. - Philippe Deléham, Jun 20 2007
Number of functions f:[1,n] -> [1,n] satisfying the condition that, for all i < j, f(j) - (j - i) is not in the interval [1, f(i) - 1]; see the Callan reference. - Joerg Arndt, May 31 2013
This is the number of intervals in the comb posets of Pallo. See the Pallo and Csar et al. references for the definition of these posets. For the proof, see the Aval et al. reference - F. Chapoton, Apr 06 2015
Construct a lower triangular array (T(n,k))n,k>=0 by putting the sequence of Catalan numbers as the first column of the array and completing the remaining columns using the recurrence T(n, k) = T(n, k-1) + T(n-1, k). This sequence will then be the leading diagonal of the array. - Peter Bala, May 13 2017
a(n) is the number of uniquely sorted permutations of length 2n+1 that avoid the patterns 231 and 4132. (A permutation is called uniquely sorted if it has exactly one preimage under West's stack-sorting map. See the Defant link.) - Colin Defant, Jun 08 2019
a(n) is the number of 132-avoiding permutations of length 3*n whose disjoint cycle decomposition contains only 3-cycles (a,b,c) with a>b>c. See the Archer and Graves reference. - Alexander Burstein, Oct 21 2021

Crossrefs

Row sums of number triangle A127631.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 1, 3][n+1],
          ((8*(4*n-11))*(4*n-5)*(4*n-9)*(2*n-5)*a(n-3)
          -(8*(4*n-5))*(n-1)*(22*n^2-94*n+99)*a(n-2)
          +8*n*(n-1)*(20*n^2-67*n+48)*a(n-1))/
          ((3*(4*n-9))*(n+1)*n*(n-1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 06 2015
  • Mathematica
    a[n_] := Sum[m*(2*n-m-1)!*HypergeometricPFQ[{m/2+1/2, m/2, m-n}, {m, m-2*n+1}, 4]/(n!*(n-m)!), {m, 1, n}]; a[0]=1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 24 2012, after Vladimir Kruchinin *)
    a[n_] := CatalanNumber[n - 1] HypergeometricPFQ[{3/2, 2, 1 - n}, {3, 2 - 2 n}, 4];
    a[0] := 1; Table[a[n], {n, 0, 23}] (* Peter Luschny, May 12 2021 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(m*sum(binomial(2*k-m-1,k-1)*binomial(2*n-k-1,n-1),k,m,n),m,1,n)/n; /* Vladimir Kruchinin, Oct 08 2011 */
  • PARI
    {a(n)= if(n<1, n==0, polcoeff( serreverse( x*(1-x)^3*(1-x^3)/(1-x^2)^4 +x*O(x^n) ), n))} /* Michael Somos, May 04 2007 */
    
  • PARI
    {a(n)= local(A); if(n<1, n==0, A= serreverse( x-x^2 +x*O(x^n) ); polcoeff( 1/(1 - subst(A, x, A)), n))} /* Michael Somos, May 04 2007 */
    

Formula

a(n) = A127714(n+1, 2n+1).
G.f. A(x) satisfies: 0 = 1 - A(x) + A(x)^2 * x * c(x) where c(x) is the g.f. of A000108.
G.f.: 2/(1 + sqrt(2 * sqrt(1 - 4*x) - 1)). - Michael Somos, May 04 2007
a(n) = Sum_{k=0..n} A106566(n, k)*A000108(k). - Philippe Deléham, Jun 20 2007
a(n) = (Sum_{m=1..n} (m*Sum_{k=m..n} binomial(2*k-m-1, k-1)*binomial(2*n-k-1, n-1)))/n, a(0)=1. - Vladimir Kruchinin, Oct 08 2011
Conjecture: 3*n*(n-1)*(4*n-9)*(n+1)*a(n) - 8*n*(n-1)*(20*n^2-67*n+48)*a(n-1) + 8*(4*n-5)*(n-1)*(22*n^2-94*n+99)*a(n-2) - 8*(4*n-11)*(4*n-5)*(4*n-9)*(2*n-5)*a(n-3) = 0. - R. J. Mathar, May 04 2018
a(n) ~ 2^(4*n - 1/2) / (sqrt(Pi) * n^(3/2) * 3^(n - 1/2)). - Vaclav Kotesovec, Aug 14 2018
From Alexander Burstein, Nov 21 2019: (Start)
G.f.: A(x) = 1 + x*c(x)^2*m(x*c(x)^2), where m(x) is the g.f. of A001006 and c(x) is the g.f. of A000108.
G.f.: A(x) satisfies: A(-x*A(x)^5) = 1/A(x). (End)
From Peter Luschny, May 12 2021: (Start)
a(n) = Catalan(n - 1) * hypergeom([3/2, 2, 1 - n], [3, 2 - 2*n], 4) for n >= 1.
a(n) = A344056(n) / A344057(n). (End)
The G.f. satisfies the algebraic equation 0 = F^4*x - F^3 + 2*F^2 - 2*F + 1. - F. Chapoton, Oct 18 2021
D-finite with recurrence 3*n*(n-1)*(n+1)*a(n) -4*n*(7*n-2)*(n-1)*a(n-1) +8*(n-1)*(2*n^2+30*n-65)*a(n-2) +8*(56*n^3-520*n^2+1534*n-1445)*a(n-3) -32*(4*n-15)*(2*n-7)*(4*n-13)*a(n-4)=0. - R. J. Mathar, Aug 01 2022

Extensions

Better name from David Callan, Jun 03 2013

A129442 Expansion of c(x)*c(x*c(x)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 6, 21, 80, 322, 1348, 5814, 25674, 115566, 528528, 2449746, 11485068, 54377288, 259663576, 1249249981, 6049846848, 29469261934, 144293491564, 709806846980, 3506278661820, 17385618278700, 86500622296800
Offset: 0

Views

Author

Philippe Deléham, May 28 2007, Jun 20 2007

Keywords

Comments

The sequence b(n) = [0,1,2,6,21,80,322,1348,...] for n >= 0 is the Catalan transform of Catalan numbers C(n-1), with C(-1)=0; Sum_{k=0..n} A106566(n,k) * A000108(k-1) = b(n).
A121988 is an essentially identical sequence. - R. J. Mathar, Jun 13 2008
Catalan transform of A014137. - R. J. Mathar, Nov 11 2008

Examples

			G.f. = 1 + 2*x + 6*x^2 + 21*x^3 + 80*x^4 + 322*x^5 + 1349*x^6 + ... - _Michael Somos_, May 28 2023
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(2*Sqrt(1-4*x)-1))/(2*x) )); // G. C. Greubel, Feb 06 2024
    
  • Maple
    c := proc (x) options operator, arrow; (1/2)*(1-sqrt(1-4*x))/x end proc; G := simplify(c(x)*c(x*c(x))); Gser := series(G, x = 0, 28); seq(coeff(Gser, x, n), n = 0 .. 24) # Emeric Deutsch, Jun 20 2007
  • Mathematica
    a[n_]:= Sum[ Binomial[2n -k-1, n-1]*Binomial[2k-2, k-1], {k, n}]/n;
    Array[a, 23] (* Robert G. Wilson v, Jul 18 2007 *)
  • SageMath
    def A129442_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-sqrt(2*sqrt(1-4*x)-1))/(2*x) ).list()
    A129442_list(40) # G. C. Greubel, Feb 06 2024

Formula

a(n-1) = (1/n)*Sum_{k=1..n} binomial(2*n-k-1, n-1)*binomial(2*k-2, k-1).
G.f.: (1-sqrt(2*sqrt(1-4*x)-1))/(2*x). - Emeric Deutsch, Jun 20 2007 Corrected by Stefan Forcey (sforcey(AT)tnstate.edu), Aug 02 2007
From Vaclav Kotesovec, Oct 20 2012: (Start)
Recurrence: 3*n*(n+1)*a(n) = 14*n*(2*n-1)*a(n-1) - 4*(4*n-5)*(4*n-3)*a(n-2).
a(n) ~ 2^(4*n+3/2)/(3^(n+1/2)*sqrt(Pi)*n^(3/2)). (End)
0 = +a(n)*(+a(n+1)*(+262144*a(n+2) -275968*a(n+3) +52608*a(n+4)) +a(n+2)*(-50176*a(n+2) +107680*a(n+3) -27930*a(n+4)) +a(n+3)*(-6006*a(n+3) +2574*a(n+4))) +a(n+1)*(+a(n+1)*(-17920*a(n+2) +21952*a(n+3) -4494*a(n+4)) +a(n+2)*(+5152*a(n+2) -15820*a(n+3) +4611*a(n+4)) +a(n+3)*(+1470*a(n+3) -630*a(n+4))) +a(n+2)*(+a(n+2)*(+42*a(n+2) +129*a(n+3) -63*a(n+4)) +a(n+3)*(-63*a(n+3) +27*a(n+4))) for n>=0. - Michael Somos, May 28 2023
From Seiichi Manyama, Jan 10 2023: (Start)
G.f.: (1/x) * Series_Reversion( x * (1-x) * (1-x+x^2) ).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+k,k) * binomial(3*n-k+1,n-2*k). (End)

Extensions

More terms from Emeric Deutsch, Jun 20 2007

A158826 Third iteration of x*C(x) where C(x) is the Catalan function (A000108).

Original entry on oeis.org

1, 3, 12, 54, 260, 1310, 6824, 36478, 199094, 1105478, 6227712, 35520498, 204773400, 1191572004, 6990859416, 41313818217, 245735825082, 1470125583756, 8840948601024, 53417237877396, 324123222435804, 1974317194619712
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Comments

Series reversion of x - 3*x^2 + 6*x^3 - 9*x^4 + 10*x^5 - 8*x^6 + 4*x^7 - x^8. - Benedict W. J. Irwin, Oct 19 2016
Column 1 of A106566^3 (see Barry, Section 3). - Peter Bala, Apr 11 2017

Crossrefs

Cf. A121988 (2nd), A158825, A158827 (4th), A158828, A158829.

Programs

  • Mathematica
    max = 22; c[x_] := Sum[ CatalanNumber[n]*x^n, {n, 0, max}]; f[x_] := x*c[x]; CoefficientList[ Series[ f@f@f@x, {x, 0, max}], x] // Rest (* Jean-François Alcover, Jan 24 2013 *)
    Rest@CoefficientList[InverseSeries[x-3x^2+6x^3-9x^4+10x^5-8x^6+4x^7-x^8+O[x]^30], x] (* Benedict W. J. Irwin, Oct 19 2016 *)
  • Maxima
    a(n):=sum(binomial(2*k-2,k-1)*sum(binomial(-k+2*i-1,i-1)*binomial(2*n-i-1,n-1),i,k,n),k,1,n)/n; /* Vladimir Kruchinin, Jan 24 2013 */
    
  • PARI
    a(n)=local(F=serreverse(x-x^2+O(x^(n+1))),G=x); for(i=1,3,G=subst(F,x,G)); polcoeff(G,n)
    
  • Python
    from sympy import binomial as C
    def a(n):
        return sum(C(2*k - 2, k - 1) * sum(C(-k + 2*i - 1, i - 1) * C(2*n - i - 1, n - 1) for i in range(k, n + 1)) for k in range(1, n + 1)) / n
    [a(n) for n in range(1, 51)] # Indranil Ghosh, Apr 12 2017

Formula

a(n) = (1/n)*Sum_{k=1..n} [ binomial(2*k-2,k-1)*Sum_{i=k..n}( binomial(-k+2*i-1,i-1)*binomial(2*n-i-1,n-1) ) ]. - Vladimir Kruchinin, Jan 24 2013
G.f.: (1 - sqrt(-1 + 2*sqrt(-1 + 2*sqrt(1 - 4*x))))/2. - Benedict W. J. Irwin, Oct 19 2016
a(n) ~ 2^(8*n - 3) / (sqrt(5*Pi) * n^(3/2) * 39^(n - 1/2)). - Vaclav Kotesovec, Jul 20 2019
Conjecture D-finite with recurrence 1053*n*(n-1)*(n-2)*(n-3)*a(n) -36*(n-1)*(n-2)*(n-3)*(634*n-1367)*a(n-1) +24*(n-2)*(n-3)*(7966*n^2-43500*n+61181)*a(n-2) -8*(n-3)*(96128*n^3-957424*n^2+3221878*n-3665189)*a(n-3) +16*(91904*n^4-1446528*n^3+8575792*n^2-22703688*n+22652013)*a(n-4) -256*(8*n-35)*(8*n-41)*(8*n-39)*(8*n-37)*a(n-5)=0. - R. J. Mathar, Aug 30 2021

A127631 Square of Riordan array (1, x*c(x)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 21, 16, 6, 1, 0, 80, 66, 30, 8, 1, 0, 322, 280, 143, 48, 10, 1, 0, 1348, 1216, 672, 260, 70, 12, 1, 0, 5814, 5385, 3150, 1344, 425, 96, 14, 1, 0, 25674, 24244, 14799, 6784, 2400, 646, 126, 16, 1
Offset: 0

Views

Author

Paul Barry, Jan 20 2007

Keywords

Comments

Square of A106566. Row sums are A127632.

Examples

			Triangle begins
  1;
  0,      1;
  0,      2,      1;
  0,      6,      4,     1;
  0,     21,     16,     6,     1;
  0,     80,     66,    30,     8,     1;
  0,    322,    280,   143,    48,    10,    1;
  0,   1348,   1216,   672,   260,    70,   12,   1;
  0,   5814,   5385,  3150,  1344,   425,   96,  14,   1;
  0,  25674,  24244, 14799,  6784,  2400,  646, 126,  16,  1;
  0, 115566, 110704, 69828, 33814, 13002, 3960, 931, 160, 18, 1;
		

Crossrefs

Programs

  • Magma
    [[k eq n select 1 else (k/n)*(&+[Binomial(2*j+k-1,j)*Binomial(2*n -k-j-1, n-k-j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 05 2019
    
  • Mathematica
    T[n_, k_]:= If[k==n, 1, (k/n)*Sum[Binomial[2*j-k-1, j-k]*Binomial[2*n-j- 1, n-j], {j,k,n}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 05 2019 *)
  • Maxima
    T(n,k):=if k=n then 1 else if n=0 then 0 else (k*sum((binomial(-k+2*i-1,i-k))*(binomial(2*n-i-1,n-i)),i,k,n))/n; /* Vladimir Kruchinin, Apr 05 2019 */
    
  • PARI
    {T(n,k) = if(k==n, 1, (k/n)*sum(j=0,n-k, binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j)))}; \\ G. C. Greubel, Apr 05 2019
    
  • Sage
    def T(n, k):
       if k == n: return 1
       return (k*sum(binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j) for j in (0..n-k)))//n
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 05 2019

Formula

Riordan array (1, x*c(x)*c(x*c(x))), where c(x) is the g.f. of A000108.
T(n+1,1) = A129442(n) = A121988(n+1). - Philippe Deléham, Feb 27 2013
T(n,k) = (k/n)*Sum_{i=k..n} C(2*i-k-1,i-k)*C(2*n-i-1,n-i), T(n,n)=1. - Vladimir Kruchinin, Apr 05 2019

A243204 Expansion of 2*x/((1-sqrt(1-2*(1-sqrt(1-4*x))))*sqrt(1-2*(1-sqrt(1-4*x))) * sqrt(1-4*x)).

Original entry on oeis.org

1, 2, 8, 35, 160, 752, 3605, 17544, 86400, 429605, 2153008, 10860720, 55086421, 280692440, 1435868960, 7369703660, 37934443008, 195748568256, 1012292239955, 5244933087000, 27220980100160, 141486701601630, 736387364237280, 3837221866576800, 20016901815607125
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2*x / (Sqrt[1-4*x] + Sqrt[-1+2*Sqrt[1-4*x]] *Sqrt[1-4*x] + 8*x-2), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 02 2014 *)
  • Maxima
    a(n):=sum(binomial(2*k-1,k)*binomial(2*n-k-1,n-k),k,0,n);
    
  • PARI
    my(x='x+O('x^50)); Vec(2*x/((1-sqrt(1-2*(1-sqrt(1-4*x))))*sqrt(1-2*(1-sqrt(1-4*x)))*sqrt(1-4*x))) \\ G. C. Greubel, Jun 01 2017

Formula

a(n) = Sum_{k=0..n} binomial(2*k-1,k)*binomial(2*n-k-1,n-k).
G.f.: A(x) = x*F'(x)/F(x), where F(x)=x*C(x)*C(x*C(x)), C(x) is g.f. of A000108.
a(n) ~ 2^(4*n-3/2) / (sqrt(Pi*n) * 3^(n-1/2)). - Vaclav Kotesovec, Jun 02 2014

A335439 a(n) = n*(n-1)/2 + 2^(n-1) - 1.

Original entry on oeis.org

0, 2, 6, 13, 25, 46, 84, 155, 291, 556, 1078, 2113, 4173, 8282, 16488, 32887, 65671, 131224, 262314, 524477, 1048785, 2097382, 4194556, 8388883, 16777515, 33554756, 67109214, 134218105, 268435861, 536871346, 1073742288, 2147484143, 4294967823, 8589935152, 17179869778
Offset: 1

Views

Author

Michel Marcus, Jun 10 2020

Keywords

Comments

Number of facets of the n-th multiplihedron.

Crossrefs

Cf. A000217, A000225, A121988 (number of vertices of the n-th multiplihedron).

Programs

  • PARI
    a(n) = n*(n-1)/2 + 2^(n-1) - 1;
    
  • PARI
    concat(0, Vec(x^2*(2 - 4*x + x^2) / ((1 - x)^3*(1 - 2*x)) + O(x^40))) \\ Colin Barker, Jun 10 2020

Formula

a(n) = A000217(n-1) + A000225(n-1).
From Colin Barker, Jun 10 2020: (Start)
G.f.: x^2*(2 - 4*x + x^2) / ((1 - x)^3*(1 - 2*x)).
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n>4.
(End)
Showing 1-9 of 9 results.