cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A158825 Square array of coefficients in the successive iterations of x*C(x) = (1-sqrt(1-4*x))/2 where C(x) is the g.f. of the Catalan numbers (A000108); read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 21, 14, 1, 5, 20, 54, 80, 42, 1, 6, 30, 110, 260, 322, 132, 1, 7, 42, 195, 640, 1310, 1348, 429, 1, 8, 56, 315, 1330, 3870, 6824, 5814, 1430, 1, 9, 72, 476, 2464, 9380, 24084, 36478, 25674, 4862, 1, 10, 90, 684, 4200, 19852, 67844, 153306, 199094, 115566, 16796
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009, Mar 29 2009

Keywords

Examples

			Square array of coefficients in iterations of x*C(x) begins:
  1,  1,   2,    5,    14,      42,      132,       429,       1430, ... A000108;
  1,  2,   6,   21,    80,     322,     1348,      5814,      25674, ... A121988;
  1,  3,  12,   54,   260,    1310,     6824,     36478,     199094, ... A158826;
  1,  4,  20,  110,   640,    3870,    24084,    153306,     993978, ... A158827;
  1,  5,  30,  195,  1330,    9380,    67844,    500619,    3755156, ... A158828;
  1,  6,  42,  315,  2464,   19852,   163576,   1372196,   11682348, ...;
  1,  7,  56,  476,  4200,   38052,   351792,   3305484,   31478628, ...;
  1,  8,  72,  684,  6720,   67620,   693048,   7209036,   75915708, ...;
  1,  9,  90,  945, 10230,  113190,  1273668,  14528217,  167607066, ...;
  1, 10, 110, 1265, 14960,  180510,  2212188,  27454218,  344320262, ...;
  1, 11, 132, 1650, 21164,  276562,  3666520,  49181418,  666200106, ...;
  1, 12, 156, 2106, 29120,  409682,  5841836,  84218134, 1225314662, ...;
  1, 13, 182, 2639, 39130,  589680,  8999172, 138755799, 2157976392, ...;
  1, 14, 210, 3255, 51520,  827960, 13464752, 221101608, 3660331064, ...;
  1, 15, 240, 3960, 66640, 1137640, 19640032, 342179672, 6007747368, ...;
  1, 16, 272, 4760, 84864, 1533672, 28012464, 516105720, 9578580504, ...;
ILLUSTRATE ITERATIONS.
       Let G(x) = x*C(x), then the first few iterations of G(x) are:
           G(x) = x +   x^2 +  2*x^3 +   5*x^4 +  14*x^5 + ...;
        G(G(x)) = x + 2*x^2 +  6*x^3 +  21*x^4 +  80*x^5 + ...;
     G(G(G(x))) = x + 3*x^2 + 12*x^3 +  54*x^4 + 260*x^5 + ...;
  G(G(G(G(x)))) = x + 4*x^2 + 20*x^3 + 110*x^4 + 640*x^5 + ...;
...
RELATED TRIANGLES.
The g.f. of column n is (g.f. of row n of A158830)/(1-x)^n
where triangle A158830 begins: 1;
      1,       0;
      2,       0,        0;
      5,       1,        0,        0;
     14,      10,        0,        0,       0;
     42,      70,        8,        0,       0,       0;
    132,     424,      160,        4,       0,       0,     0;
    429,    2382,     1978,      250,       1,       0,     0,   0;
   1430,   12804,    19508,     6276,     302,       0,     0,   0, 0;
   4862,   66946,   168608,   106492,   15674,     298,     0,   0, 0, 0;
  16796,  343772,  1337684,  1445208,  451948,   33148,   244,   0, 0, 0, 0;
  58786, 1744314, 10003422, 16974314, 9459090, 1614906, 61806, 162, 0, 0, 0, 0;
  ...
Triangle A158835 transforms one diagonal into the next:
       1;
       1,      1;
       4,      2,     1;
      27,     11,     3,    1;
     254,     94,    21,    4,   1;
    3062,   1072,   217,   34,   5,  1;
   45052,  15212,  2904,  412,  50,  6, 1;
  783151, 257777, 47337, 6325, 695, 69, 7, 1; ...
so that:
  A158835 * A158831 = A158832;
  A158835 * A158832 = A158833;
  A158835 * A158833 = A158834;
where the diagonals start:
  A158831 = [1, 1,  6,  54,  640,  9380,  163576,  3305484, ...];
  A158832 = [1, 2, 12, 110, 1330, 19852,  351792,  7209036, ...];
  A158833 = [1, 3, 20, 195, 2464, 38052,  693048, 14528217, ...];
  A158834 = [1, 4, 30, 315, 4200, 67620, 1273668, 27454218, ...].
		

Crossrefs

Antidiagonal sums: A158829.
Related triangles: A158830, A158835.
Variant: A122888.

Programs

  • Mathematica
    Clear[row]; nmax = 12;
    row[n_]:= row[n]= CoefficientList[Nest[(1-Sqrt[1-4#])/2&, x, n] + O[x]^(nmax+1), x] //Rest;
    T[n_, k_]:= row[n][[k]];
    Table[T[n-k+1, k], {n, nmax}, {k, n}]//Flatten (* Jean-François Alcover, Jul 13 2018, updated Aug 09 2018 *)
  • PARI
    {T(n,k)= local(F=serreverse(x-x^2+O(x^(k+2))), G=x);
    for(i=1, n, G=subst(F,x,G)); polcoeff(G,k)}

Formula

G.f. of column n = (g.f. of row n of A158830)/(1-x)^n.
Row k equals the first column of the k-th matrix power of Catalan triangle A033184; thus triangle A033184 transforms row n into row n+1 of this array (A158825). - Paul D. Hanna, Mar 30 2009
From G. C. Greubel, Apr 01 2021: (Start)
T(n, 1) = A000012(n), T(n, 2) = A000027(n).
T(n, 3) = A002378(n), T(n, 4) = A160378(n+1). (End)

A121988 Number of vertices of the n-th multiplihedron.

Original entry on oeis.org

0, 1, 2, 6, 21, 80, 322, 1348, 5814, 25674, 115566, 528528, 2449746, 11485068, 54377288, 259663576, 1249249981, 6049846848, 29469261934, 144293491564, 709806846980, 3506278661820, 17385618278700, 86500622296800, 431718990188850, 2160826237261692
Offset: 0

Views

Author

Jonathan Vos Post, Jun 24 2007

Keywords

Comments

G.f. = x*c(x)*c(x*c(x)) where c(x) is the generating function of the Catalan numbers C(n). Thus a(n) is the Catalan transform of the sequence C(n-1). Reference for the definition of Catalan transform is the paper by Paul Barry. - Stefan Forcey (sforcey(AT)tnstate.edu), Aug 02 2007
A129442 is an essentially identical sequence. - R. J. Mathar, Jun 13 2008
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by putting the sequence [0, 1, 1, 2, 5, 14, 42, ...] of Catalan numbers (with 0 prepended) in the first column (k = 0) of the array and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1.
0
1 1
1 2 2
2 4 6 6
5 9 15 21 21
14 23 38 59 80 80
...
Cf. A307495.
Alternatively, the sequence can be obtained by multiplying the sequence of Catalan numbers by the array A106566. (End)

Examples

			G.f. = x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 + 1348*x^7 + 5814*x^8 + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n, (14*(n-1)*(2*n-3)*a(n-1)
          -4*(4*n-9)*(4*n-7)*a(n-2))/ (3*n*(n-1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 20 2012
  • Mathematica
    a[0] = 0; a[n_] := a[n] = (2 n - 2)!/((n - 1)! n!) + Sum[ a[i]*a[n - i], {i, n - 1}]; Table[ a@n, {n, 0, 24}] (* Robert G. Wilson v, Jun 28 2007 *)
    a[ n_] := If[ n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[ x - 2 x^2 + 2 x^3 - x^4, {x, 0, n}]], {x, 0, n}]]; (* Michael Somos, Jun 01 2014 *)
    a[0] = 0; a[n_] := Binomial[2n-2, n-1]*Hypergeometric2F1[1/2, 1-n, 2-2n, 4] /n; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 31 2016 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( x - 2*x^2 + 2*x^3 - x^4 + x * O(x^n)), n))}; /* Michael Somos, Jun 01 2014 */

Formula

a(0) = 0; a(n) = C(n-1) + Sum_{i=1..n-1} a(i)*a(n-i), where C(n) = A000108(n).
G.f.: (1-sqrt(2*sqrt(1-4x)-1))/2. a(n) = (1/n)*Sum_{k=1..n} binomial(2*n-k-1,n-1)*binomial(2k-2, k-1); a(0)=0. - Stefan Forcey (sforcey(AT)tnstate.edu), Aug 02 2007
a(n) = Sum_{k = 0..n} A106566(n,k)*A000108(k-1) with A000108(-1)=0. - Philippe Deléham, Aug 27 2007
From Vaclav Kotesovec, Oct 19 2012: (Start)
D-finite with recurrence 3*(n-1)*n*a(n) = 14*(n-1)*(2*n-3)*a(n-1) - 4*(4*n-9)*(4*n-7)*a(n-2).
a(n) ~ 2^(4*n-5/2)/(sqrt(Pi)*3^(n-1/2)*n^(3/2)). (End)
G.f.: A(x) satisfies A(x)=x*(1+A(x))/((1-A(x))*(1+A(x)^3)). - Vladimir Kruchinin, Jun 01 2014
G.f. is series reversion of (x - x^2) * (1 - x + x^2) = x - 2*x^2 + 2*x^3 - x^4. - Michael Somos, Jun 01 2014
From Peter Bala, Aug 22 2024: (Start)
G.f. A(x) = 1 - 1/c(x*c(x)), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
Sum_{n >= 1} a(n)*y^n = x*c(x), where y = x*(1 - x). (End)

Extensions

More terms from Robert G. Wilson v, Jun 28 2007

A158827 The 4th iteration of x*C(x) where C(x) is the Catalan function (A000108).

Original entry on oeis.org

1, 4, 20, 110, 640, 3870, 24084, 153306, 993978, 6544242, 43652340, 294469974, 2006018748, 13784115468, 95444016984, 665407010349, 4667570034444, 32922870719664, 233389493503968, 1662048903052380, 11885333877149532
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(F=serreverse(x-x^2+O(x^(n+1))),G=x); for(i=1,4,G=subst(F,x,G));polcoeff(G,n)}

Formula

Series reversion of 1 -4*x +12*x^2 -30*x^3 +64*x^4 -118*x^5 +188*x^6 -258*x^7 +302*x^8 -298*x^9 +244*x^10 -162*x^11 +84*x^12 -32*x^13 +8*x^14 -x^15. - R. J. Mathar, Aug 30 2021

A158828 The 5th iteration of x*C(x) where C(x) is the Catalan function (A000108).

Original entry on oeis.org

1, 5, 30, 195, 1330, 9380, 67844, 500619, 3755156, 28558484, 219767968, 1708590960, 13403300208, 105983648060, 844009565176, 6764300053390, 54525119251104, 441811163402124, 3597005618194848, 29412560840221272
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(F=serreverse(x-x^2+O(x^(n+1))),G=x); for(i=1,5,G=subst(F,x,G));polcoeff(G,n)}

Formula

Series reversion of x -5*x^2 +20*x^3 -70*x^4 +220*x^5 -630*x^6 +1656*x^7 -4014*x^8 +8994*x^9 -18654*x^10 +35832*x^11 -63750*x^12 +105024*x^13 -160120*x^14 +225696*x^15 -293685*x^16 +352074*x^17 -387820*x^18 +391232*x^19 -359992*x^20 +300664*x^21 -226580*x^22 +152952*x^23 -91656*x^24 +48204*x^25 -21924*x^26 +8456*x^27 -2692*x^28 +680*x^29 -128*x^30 +16*x^31 -x^32. - R. J. Mathar, Aug 30 2021

A158829 Antidiagonal sums of square array A158825, in which row n lists the coefficients of the n-th iteration of x*C(x), where C(x) is the Catalan function (A000108).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 202, 861, 3972, 19648, 103500, 577443, 3396804, 20988116, 135770140, 916936351, 6449233093, 47137434787, 357331341987, 2804582808108, 22754919576652, 190578011064394, 1645490708244886, 14629351150837605
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(F=serreverse(x-x^2+O(x^(n+1))),G=x,ADS=0); for(k=1,n,G=x;for(i=1,n-k,G=subst(F,x,G));ADS=ADS+polcoeff(G,k));ADS}
Showing 1-5 of 5 results.