cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046736 Number of ways to place non-intersecting diagonals in convex n-gon so as to create no triangles.

Original entry on oeis.org

1, 0, 1, 1, 4, 8, 25, 64, 191, 540, 1616, 4785, 14512, 44084, 135545, 418609, 1302340, 4070124, 12785859, 40325828, 127689288, 405689020, 1293060464, 4133173256, 13246527139, 42557271268, 137032656700, 442158893833, 1429468244788
Offset: 2

Views

Author

Keywords

Examples

			a(4)=a(5)=1 because of null placement; a(6)=4 because in addition to not placing any, we might also place one between any of the 3 pairs of opposite vertices.
		

Crossrefs

Cf. A001003 (Schroeder), A001006 (Motzkin), A000108 (Catalan), A052524.

Programs

  • Magma
    A046736:= func< n | n eq 2 select 1 else (&+[Binomial(n+k-2,k)*Binomial(n-k-3, k-1)/(n-1): k in [0..Floor(n/2)-1]]) >;
    [A046736(n): n in [2..40]]; // G. C. Greubel, Jul 31 2024
    
  • Maple
    a := n->1/(n-1)*sum(binomial(n+k-2,k)*binomial(n-k-3,k-1),k=0..floor(n/2-1)); seq(a(i),i=2..30);
  • Mathematica
    (* Programs from Jean-François Alcover, Apr 14 2017: Start *)
    (* First program *)
    a[2]=1; a[n_] := Sum[Binomial[n+k-2, k]*Binomial[n-k-3, k-1], {k, 0, Floor[n/2]-1}]/(n-1);
    (* 2nd program: *)
    x*InverseSeries[Series[(y-y^2-y^3)/(1-y), {y, 0, 29}], x]
    (* 3rd program: *)
    a[2]=1; a[3]=0; a[n_] := HypergeometricPFQ[{2-n/2, 5/2-n/2, n}, {2, 4-n}, -4]; Table[a[n], {n, 2, 30}]
    (* End *)
  • PARI
    a(n)=if(n<2,0,polcoeff(serreverse((x-x^2-x^3)/(1-x)+x*O(x^n)),n-1))
    
  • SageMath
    def A046736(n): return 1 if n==2 else sum(binomial(n+k-2,k)*binomial(n-k-3, k-1)//(n-1) for k in range(n//2))
    [A046736(n) for n in range(2,41)] # G. C. Greubel, Jul 31 2024

Formula

G.f.: A(x) = Sum_{n>0} a(n)*x^(n-1) satisfies A(x) - A(x)^2 - A(x)^3 = x*(1 - A(x)).
a(n) = A052524(n-1)/(n-1)!, for n > 0.
Let g = (1-x)/(1-x-x^2) then a(m) = coeff. of x^(m-2) in g^(m-1)/(m-1).
D-finite with recurrence: 5*(n-1)*n*(37*n-95)*a(n) = 4*(n-1)*(74*n^2 -301*n +300)*a(n-1) + 8*(2*n-5)*(74*n^2 -301*n +297)*a(n-2) - 2*(n-3)*(2*n-7)*(37*n-58)*a(n-3). - Vaclav Kotesovec, Aug 10 2013
a(n) = A143363(n-3) + Sum_{k=0..n-6} ( A143363(k+1)*a(n-k-2) ). - Muhammed Sefa Saydam, Feb 14 2025 and Aug 05 2025

A052525 Number of unlabeled rooted trees with n leaves in which the degrees of the root and all internal nodes are >= 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 6, 10, 20, 36, 71, 136, 270, 531, 1070, 2147, 4367, 8895, 18262, 37588, 77795, 161444, 336383, 702732, 1472582, 3093151, 6513402, 13744384, 29063588, 61570853, 130669978, 277767990, 591373581, 1260855164
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Old name was "Non-planar unlabeled trees with neither unary nor binary nodes". I am leaving this alternative name here because it may help clarify the definitions of related sequences. - N. J. A. Sloane.

Examples

			For instance, with 7 leaves, the 6 choices are:
. [ *,*,*,*,*,*,* ]
. [ *,*,*,*,[ *,*,* ] ]
. [ *,*,*,[ *,*,*,* ] ]
. [ *,*,[ *,*,*,*,* ] ]
. [ *,*,[ *,*,[ *,*,* ] ] ]
. [ *,[ *,*,* ],[ *,*,* ] ]
		

Crossrefs

Cf. A052524 and A052526.

Programs

  • Maple
    spec := [ S, {B=Union(S, Z), S=Set(B, 3 <= card)}, unlabeled ]: seq(combstruct[ count ](spec, size=n), n=0..50);

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.2318799173898687960533559522113115638..., c = 0.3390616344584879699709248904124... . - Vaclav Kotesovec, May 04 2015

Extensions

More terms from Paul Zimmermann, Oct 31 2002
Showing 1-2 of 2 results.