cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046741 Triangle read by rows giving number of arrangements of k dumbbells on 2 X n grid (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 7, 11, 3, 1, 10, 29, 26, 5, 1, 13, 56, 94, 56, 8, 1, 16, 92, 234, 263, 114, 13, 1, 19, 137, 473, 815, 667, 223, 21, 1, 22, 191, 838, 1982, 2504, 1577, 424, 34, 1, 25, 254, 1356, 4115, 7191, 7018, 3538, 789, 55, 1, 28, 326, 2054, 7646, 17266, 23431
Offset: 0

Views

Author

Keywords

Comments

Equivalently, T(n,k) is the number of k-matchings in the ladder graph L_n = P_2 X P_n. - Emeric Deutsch, Dec 25 2004
In other words, triangle of number of monomer-dimer tilings on (2,n)-block with k dimers. If z marks the size of the block and t marks the dimers, then it is easy to see that the g.f. for indecomposable tilings, i.e., those that cannot be split vertically into smaller tilings, is g = (1+t)*z + t^2*z^2 + 2*t*z^2 + 2*t^2*z^3 + 2*t^3*z^4 + ... = (1+t)*z + t^2*z^2 + 2*t*z^2/(1-t*z); then the g.f. is 1/(1-g) = (1-t*z)/(1 - z - 2*t*z - t*z^2 + t^3*z^3) (see eq. (4) of the Grimson reference). From this the recurrence of the McQuistan & Lichtman reference follows at once. - Emeric Deutsch, Oct 16 2006

Examples

			T(3, 2)=11 because in the 2 X 3 grid with vertex set {O(0, 0), A(1, 0), B(2, 0), C(2, 1), D(1, 1), E(0, 1)} and edge set {OA, AB, ED, DC, UE, AD, BC} we have the following eleven 2-matchings: {OA, BC}, {OA, DC}, {OA, ED}, {AB, DC}, {AB, ED}, {AB, OE}, {BC, AD}, {BC, ED}, {BC, OA}, {BC, OE} and {DC, OE}. - _Emeric Deutsch_, Dec 25 2004
Triangle starts:
  1;
  1,  1;
  1,  4,  2;
  1,  7, 11,  3;
  1, 10, 29, 26,  5;
		

Crossrefs

Diagonals give A002940, A002941, A002889.
Row sums yield A030186. T(n,n) = Fibonacci(n+1) (A000045).

Programs

  • Haskell
    a046741 n k = a046741_tabl !! n !! k
    a046741_row n = a046741_tabl !! n
    a046741_tabl = [[1], [1, 1], [1, 4, 2]] ++ f [1] [1, 1] [1, 4, 2] where
       f us vs ws = ys : f vs ws ys where
         ys = zipWith (+) (zipWith (+) (ws ++ [0]) ([0] ++ map (* 2) ws))
                          (zipWith (-) ([0] ++ vs ++ [0]) ([0, 0, 0] ++ us))
    -- Reinhard Zumkeller, Jan 18 2014
  • Maple
    F[0]:=1:F[1]:=1+t:F[2]:=1+4*t+2*t^2:for n from 3 to 10 do F[n]:=sort(expand((1+2*t)*F[n-1]+t*F[n-2]-t^3*F[n-3])) od: for n from 0 to 10 do seq(coeff(t*F[n],t^k),k=1..n+1) od;# yields sequence in triangular form - Emeric Deutsch
  • Mathematica
    p[n_] := p[n] = (1 + 2t) p[n-1] + t*p[n-2] - t^3*p[n-3]; p[0] = 1; p[1] = 1+t; p[2] = 1 + 4t + 2t^2; Flatten[Table[CoefficientList[Series[p[n], {t, 0, n}], t], {n, 0, 10}]][[;; 62]] (* Jean-François Alcover, Jul 13 2011, after Emeric Deutsch *)
    CoefficientList[LinearRecurrence[{1 + 2 x, x, -x^3}, {1 + x, 1 + 4 x + 2 x^2, 1 + 7 x + 11 x^2 + 3 x^3}, {0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    CoefficientList[CoefficientList[Series[-(1 + x z) (-1 - x + x^2 z)/(1 - z - 2 x z - x z^2 + x^3 z^3), {z, 0, 10}], z], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)

Formula

From Emeric Deutsch, Dec 25 2004: (Start)
The row generating polynomials P[n] satisfy P[n] = (1 + 2*t)*P[n-1] + t*P[n-2] - t^3*P[n-3] with P[0] = 1, P[1] = 1+t, P[2] = 1 + 4*t + 2*t^2.
G.f.: (1-t*z)/(1 - z - 2*t*z - t*z^2 + t^3*z^3). (End)
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-1) - T(n-3,k-3).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000
Formula fixed by Reinhard Zumkeller, Jan 18 2014