cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046747 Number of n X n rational {0,1}-matrices of determinant 0.

Original entry on oeis.org

1, 10, 338, 42976, 21040112, 39882864736, 292604283435872, 8286284310367538176
Offset: 1

Views

Author

Günter M. Ziegler (ziegler(AT)math.tu-berlin.de)

Keywords

Examples

			a(2)=10: the matrix of all 0's, 4 matrices with 2 zeros in the same row or column, 4 matrices with 3 zeros and the all-1 matrix.
		

Crossrefs

Programs

  • Mathematica
    Sum[KroneckerDelta[Det[Array[Mod[Floor[k/(2^(n*(#1-1)+#2-1))],2]&,{n,n}]],0],{k,0,(2^(n^2))-1}] (* John M. Campbell, Jun 24 2011 *)
    Count[Det /@ Tuples[{0, 1}, {n, n}], 0] (* David Trimas, Sep 23 2024 *)
  • PARI
    A046747(n) = m=matrix(n,n); ct=0; for(x=0,2^(n*n)-1,a=binary(x+2^(n*n)); for(i=1,n, for(j=1,n,m[i,j]=a[n*i+j+1-n])); if(matdet(m)==0,ct=ct+1,); ); ct \\ Randall L Rathbun
    
  • PARI
    a(n)=sum(i=0,2^n^2-1,matdet(matrix(n,n,x,y,(i>>(n*x+y-n-1))%2))==0) \\ Charles R Greathouse IV, Feb 21 2015

Formula

a(n) = 2^(n^2) - n! * binomial(2^n -1, n) + n! * A000410(n).
a(n) + A055165(n) = 2^(n^2) = total number of n X n (0, 1) matrices.
The probability that a random n X n {0,1}-matrix is singular is conjectured to be asymptotic to C(n+1, 2)*(1/2)^(n-1). [Corrected by N. J. A. Sloane, Jan 02 2007]

Extensions

a(8) from Vladeta Jovovic, Mar 28 2006