cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A361098 Intersection of A360765 and A360768.

Original entry on oeis.org

36, 48, 50, 54, 72, 75, 80, 96, 98, 100, 108, 112, 135, 144, 147, 160, 162, 189, 192, 196, 200, 216, 224, 225, 240, 242, 245, 250, 252, 270, 288, 294, 300, 320, 324, 336, 338, 350, 352, 360, 363, 375, 378, 384, 392, 396, 400, 405, 416, 432, 441, 448, 450, 468, 480, 484, 486, 490, 500, 504, 507, 525
Offset: 1

Views

Author

Michael De Vlieger, Mar 15 2023

Keywords

Comments

Numbers k that are neither prime powers nor squarefree, such that rad(k) * A053669(k) < k and k/rad(k) >= A119288(k), where rad(k) = A007947(k).
Numbers k such that A360480(k), A360543(k), A361235(k), and A355432(k) are positive.
Subset of A126706. All terms are neither prime powers nor squarefree.
From Michael De Vlieger, Aug 03 2023: (Start)
Superset of A286708 = A001694 \ {{1} U A246547}, which in turn is a superset of A303606. We may write k in A286708 as m*rad(k)^2, m >= 1. Since omega(k) > 1, it is clear both k/rad(k) > A053669(k) and k/rad(k) >= A119288(k). Also superset of A359280 = A286708 \ A303606.
This sequence contains {A002182 \ A168263}. (End)

Examples

			For prime p, A360480(p) = A360543(p) = A361235(p) = A355432(p) = 0, since k < p is coprime to p.
For prime power n = p^e > 4, e > 0, A360543(n) = p^(e-1) - e, but A360480(n) = A361235(n) = A355432(n) = 0, since the other sequences require omega(n) > 1.
For squarefree composite n, A360480(n) >= 1 and A361235(n) >= 1 (the latter for n > 6), but A360543(n) = A355432(n) = 0, since the other sequences require at least 1 prime power factor p^e | n with e > 0.
For n = 18, A360480(n) = | {10, 14, 15} | = 3,
            A360543(n) = | {} | = 0,
            A361235(n) = | {4, 8, 16} | = 3,
            A355432(n) = | {12} | = 1.
Therefore 18 is not in the sequence.
For n = 36, A360480(n) = | {10, 14, 15, 20, 21, 22, 26, 28, 33, 34} | = 10,
            A360543(n) = | {30} | = 1,
            A361235(n) = | {8, 16, 27, 32} | = 4,
            A355432(n) = | {24} | = 1.
Therefore 36 is the smallest term in the sequence.
Table pertaining to the first 12 terms:
Key: a = A360480, b = A360543, c = A243823; d = A361235, e = A355432, f = A243822;
g = A046753 = f + c, tau = A000005, phi = A000010.
    n |  a + b =  c | d + e = f | g + tau + phi - 1 =  n
  ------------------------------------------------------
   36 | 10 + 1 = 11 | 4 + 1 = 5 | 16 +  9 + 12 - 1 =  36
   48 | 16 + 2 = 18 | 3 + 2 = 5 | 23 + 10 + 16 - 1 =  48
   50 | 18 + 1 = 19 | 4 + 2 = 6 | 25 +  6 + 20 - 1 =  50
   54 | 19 + 2 = 21 | 4 + 4 = 8 | 29 +  8 + 18 - 1 =  54
   72 | 27 + 4 = 31 | 4 + 2 = 6 | 37 + 12 + 24 - 1 =  72
   75 | 25 + 2 = 27 | 2 + 1 = 3 | 30 +  6 + 40 - 1 =  75
   80 | 32 + 3 = 35 | 3 + 1 = 4 | 39 + 10 + 32 - 1 =  80
   96 | 38 + 7 = 45 | 4 + 4 = 8 | 53 + 12 + 32 - 1 =  96
   98 | 41 + 3 = 44 | 5 + 2 = 7 | 51 +  6 + 42 - 1 =  98
  100 | 42 + 4 = 46 | 4 + 2 = 6 | 52 +  9 + 40 - 1 = 100
  108 | 44 + 8 = 52 | 5 + 4 = 9 | 61 + 12 + 36 - 1 = 108
  112 | 48 + 3 = 51 | 3 + 1 = 4 | 55 + 10 + 48 - 1 = 112
		

Crossrefs

Programs

  • Mathematica
    nn = 2^16;
    a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
    s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &];
    Reap[ Do[n = s[[j]];
        If[And[#1*a053669[n] < n, n/#1 >= #2] & @@ {Times @@ #, #[[2]]} &@
          FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}]][[-1, -1]]

A189683 Irregular pairs (p,2k) ordered by increasing k.

Original entry on oeis.org

691, 12, 3617, 16, 43867, 18, 283, 20, 617, 20, 131, 22, 593, 22, 103, 24, 2294797, 24, 657931, 26, 9349, 28, 362903, 28, 1721, 30, 1001259881, 30, 37, 32, 683, 32, 305065927, 32, 151628697551, 34, 26315271553053477373, 36, 154210205991661, 38, 137616929, 40
Offset: 1

Views

Author

Jonathan Sondow, Apr 25 2011

Keywords

Comments

The subsequence of irregular primes p is A046753.

Examples

			The first few irregular pairs are (691,12), (3617,16), (43867,18), (283,20), (617,20), (131,22), (593,22), ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[p = Select[First /@ FactorInteger[Abs[Numerator[BernoulliB[n]]]], # >= n+3 &]; Transpose[{p, Table[n, {Length[p]}]}], {n, 2, 70, 2}]] (* T. D. Noe, Apr 25 2011 *)

A035112 Smallest even index 2a such that n-th irregular prime p (A000928(n)) divides Bernoulli_{2a} with 0<=2a<=p-3.

Original entry on oeis.org

32, 44, 58, 68, 24, 22, 130, 62, 84, 164, 100, 84, 20, 156, 88, 292, 280, 186, 100, 200, 382, 126, 240, 366, 196, 130, 94, 292, 400, 86, 270, 222, 52, 90, 22, 592, 522, 20, 428, 80, 236, 48, 224, 408, 628, 32, 12, 378, 290, 514, 260, 732, 220, 330, 544, 744, 102
Offset: 1

Views

Author

Keywords

Comments

The ordered pair (p(n),a(n)) where p(n) is the n-th irregular prime is called an irregular pair. Some irregular primes, such as 157, are in more than one pair. See A091887 for the number of pairs for each irregular prime. See A092681 and A092682 for higher-order irregular pairs. - T. D. Noe, Mar 03 2004

Examples

			The first irregular prime (37) divides the numerator (-7709321041217) of the 32nd Bernoulli number.
		

References

  • L. C. Washington, Introduction to Cyclotomic Fields, Springer, p. 350.

Crossrefs

Programs

  • Mathematica
    Do[ p = Prime[ n ]; k = 1; While[ 2*k < p - 3 && Mod[ Numerator[ BernoulliB[ 2*k ] ], p ] != 0, k++ ]; If[ 2*k != p - 3, Print[ 2*k ] ], { n, 3, 200} ]

Extensions

More terms from Robert G. Wilson v, May 12 2001

A189684 Number of irregular pairs (p,2n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 2, 2, 1, 2, 2, 3, 1, 1, 1, 2, 1, 4, 2, 3, 2, 4, 3, 3, 4, 3, 4, 2, 2, 4, 3, 2, 1, 2, 3, 5, 3, 5, 3, 3, 3, 3, 5, 5, 5, 5, 5, 3, 4, 3, 5, 3, 1, 4, 1, 3, 3, 7, 3, 6, 5, 3, 4, 3, 7, 6, 3, 2, 6, 6, 6, 5, 6, 5, 7, 5, 4, 7, 8, 5, 3, 2, 7
Offset: 1

Views

Author

Jonathan Sondow, Apr 25 2011

Keywords

Comments

a(n) is the number of primes p >= 2n+3 that divide the numerator of the Bernoulli number B_{2n}.

Crossrefs

Programs

  • Mathematica
    Table[p = Select[First /@ FactorInteger[Abs[Numerator[BernoulliB[2n]]]], # >= 2*n+3 &]; Length[p], {n, 35}] (* T. D. Noe, Apr 25 2011 *)
Showing 1-4 of 4 results.