A046803 Triangle of numbers related to Eulerian numbers.
1, 1, 2, 1, 6, 3, 1, 14, 22, 4, 1, 30, 105, 65, 5, 1, 62, 416, 581, 171, 6, 1, 126, 1491, 3920, 2695, 420, 7, 1, 254, 5034, 22506, 29310, 11180, 988, 8, 1, 510, 16365, 116667, 256317, 188361, 43041, 2259, 9, 1, 1022, 51892, 564667, 1945297, 2419897, 1090135
Offset: 1
Examples
Triangle begins 1; 1, 2; 1, 6, 3; 1, 14, 22, 4; 1, 30, 105, 65, 5; 1, 62, 416, 581, 171, 6; 1, 126, 1491, 3920, 2695, 420, 7; ...
References
- D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Programs
-
Mathematica
egf = Exp[x*y]*(Exp[x]-1)*((y-1)/(y*Exp[x] - Exp[x*y])); row[n_] := Last[ CoefficientList[ Series[egf, {x, 0, n}, {y, 0, n}], {x, y}]]*n!; Flatten[ Table[ row[n], {n, 1, 10}]] (* Jean-François Alcover, Dec 20 2012, after Vladeta Jovovic *)
-
PARI
T(n)={my(A=O(x*x^n)); [Vecrev(p) | p<-Vec(serlaplace(exp(x*y + A)*(exp(x + A)-1)*(y-1)/(y*exp(x + A)-exp(x*y + A))))]} { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Mar 07 2020
-
PARI
\\ here U(n,k) is A008292. U(n, k)={sum(j=0, k, (-1)^j * (k-j)^n * binomial( n+1, j))}; T(n, k)={sum(i=1, n, binomial(n,i)*U(n-i, k-1))} \\ Andrew Howroyd, Mar 07 2020
Formula
T(n, k) = Sum_{i=1..n} binomial(n,i) * A008292(n-i, k-1).
E.g.f.: exp(x*y)*(exp(x)-1)*(y-1)/(y*exp(x)-exp(x*y)). - Vladeta Jovovic, Sep 20 2003
Extensions
More terms from Vladeta Jovovic, Sep 20 2003