cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046803 Triangle of numbers related to Eulerian numbers.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 14, 22, 4, 1, 30, 105, 65, 5, 1, 62, 416, 581, 171, 6, 1, 126, 1491, 3920, 2695, 420, 7, 1, 254, 5034, 22506, 29310, 11180, 988, 8, 1, 510, 16365, 116667, 256317, 188361, 43041, 2259, 9, 1, 1022, 51892, 564667, 1945297, 2419897, 1090135
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins
  1;
  1,   2;
  1,   6,    3;
  1,  14,   22,    4;
  1,  30,  105,   65,    5;
  1,  62,  416,  581,  171,   6;
  1, 126, 1491, 3920, 2695, 420, 7;
  ...
		

References

  • D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.

Crossrefs

Row sums give A002627.
Cf. A008292 (Eulerian numbers), A046802.

Programs

  • Mathematica
    egf = Exp[x*y]*(Exp[x]-1)*((y-1)/(y*Exp[x] - Exp[x*y])); row[n_] := Last[ CoefficientList[ Series[egf, {x, 0, n}, {y, 0, n}], {x, y}]]*n!; Flatten[ Table[ row[n], {n, 1, 10}]] (* Jean-François Alcover, Dec 20 2012, after Vladeta Jovovic *)
  • PARI
    T(n)={my(A=O(x*x^n)); [Vecrev(p) | p<-Vec(serlaplace(exp(x*y + A)*(exp(x + A)-1)*(y-1)/(y*exp(x + A)-exp(x*y + A))))]}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Mar 07 2020
    
  • PARI
    \\ here U(n,k) is A008292.
    U(n, k)={sum(j=0, k, (-1)^j * (k-j)^n * binomial( n+1, j))};
    T(n, k)={sum(i=1, n, binomial(n,i)*U(n-i, k-1))} \\ Andrew Howroyd, Mar 07 2020

Formula

T(n, k) = Sum_{i=1..n} binomial(n,i) * A008292(n-i, k-1).
E.g.f.: exp(x*y)*(exp(x)-1)*(y-1)/(y*exp(x)-exp(x*y)). - Vladeta Jovovic, Sep 20 2003

Extensions

More terms from Vladeta Jovovic, Sep 20 2003