A046820 Number of 1's in binary expansion of 5n.
0, 2, 2, 4, 2, 3, 4, 3, 2, 4, 3, 5, 4, 2, 3, 4, 2, 4, 4, 6, 3, 4, 5, 5, 4, 6, 2, 4, 3, 3, 4, 5, 2, 4, 4, 6, 4, 5, 6, 4, 3, 5, 4, 6, 5, 4, 5, 6, 4, 6, 6, 8, 2, 3, 4, 4, 3, 5, 3, 5, 4, 4, 5, 6, 2, 4, 4, 6, 4, 5, 6, 5, 4, 6, 5, 7, 6, 3, 4, 5, 3, 5, 5, 7, 4, 5, 6, 6, 5, 7, 4, 6, 5
Offset: 0
Examples
For n = 10, 5*n = 50 = 110010_2, having 3 1's. So, a(10) = 3. - _Indranil Ghosh_, Jan 18 2017
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..10000
- Michael Gilleland, Some Self-Similar Integer Sequences.
Crossrefs
Cf. A000120.
Programs
-
Mathematica
a[n_] := DigitCount[5*n, 2, 1]; Array[a, 100, 0] (* Amiram Eldar, Jul 18 2023 *)
-
PARI
a(n) = hammingweight(5*n); \\ Michel Marcus, Aug 19 2018
-
Python
def A046820(n): return bin(5*n)[2:].count("1") # Indranil Ghosh, Jan 18 2017
Formula
a(n) = floor(log(gcd(binomial(10*n, 5*n), 2^floor(log(binomial(10*n, 5*n))/log(2))))/log(2)). - Benoit Cloitre, Mar 27 2002
a(n) = A000120(5*n). - Indranil Ghosh, Jan 18 2017
Comments