cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046825 Numerator of Sum_{k=0..n} 1/binomial(n,k).

Original entry on oeis.org

1, 2, 5, 8, 8, 13, 151, 256, 83, 146, 1433, 2588, 15341, 28211, 52235, 19456, 19345, 36362, 651745, 6168632, 1463914, 2786599, 122289917, 233836352, 140001721, 268709146, 774885169, 1491969394, 41711914513, 80530073893
Offset: 0

Views

Author

Keywords

Comments

The term a(12)=15341 is divisible by 23^2. Is there another term a(n) divisible by the square of a prime p larger than n+1? - M. F. Hasler, Jul 17 2012

Examples

			1, 2, 5/2, 8/3, 8/3, 13/5, 151/60, 256/105, 83/35, 146/63, 1433/630, 2588/1155, 15341/6930, 28211/12870, 52235/24024, 19456/9009, 19345/9009, ... = A046825/A046826
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294, Problem 7.15.
  • R. L. Graham, D. E. Knuth, O. Patashnik; Concrete Mathematics, Addison-Wesley, Reading (1994) 2nd Ed. Exercise 5.100.
  • G. Letac, Problèmes de probabilitĂ©s, Presses Universitaires de France (1970), p. 14.
  • F. Nedemeyer and Y. Smorodinsky, Resistances in the multidimensional cube, Quantum 7:1 (1996) 12-15 and 63.

Crossrefs

Programs

  • Magma
    [Numerator((&+[1/Binomial(n,j): j in [0..n]])): n in [0..40]]; // G. C. Greubel, May 24 2021
    
  • Mathematica
    Numerator/@Table[Sum[1/Binomial[n,k],{k,0,n}],{n,0,40}]  (* Harvey P. Dale, Apr 21 2011 *)
  • PARI
    P=1;vector(30,n,numerator(P)+0*P=P/2/n*(n+1)+1) \\ M. F. Hasler, Jul 17 2012
    
  • PARI
    A046825(n)=numerator(sum(k=0,n,1/binomial(n,k))) \\ M. F. Hasler, Jul 19 2012
    
  • Sage
    [numerator(sum(1/binomial(n,j) for j in (0..n))) for n in (0..40)] # G. C. Greubel, May 24 2021

Formula

Let P(n) = (1/n) * Sum_{k=0..n-1} 1/binomial(n-1, k) = A046878(n)/A046879(n) = A046825(n-1)/(n*A046826(n-1)): { 0, 1, 1, 5/6, 2/3, 8/15, ...}. Then P(n) = 2^(-n) * Sum_{k=1..n} 2^k / k = 2^(-n+1) * Sum_{k odd} binomial(n, k)/k; P(0) = 0, P(n) = P(n-1)/2 + 1/n. - Torsten Sillke (Torsten.Sillke(AT)uni-bielefeld.de)
G.f. for P(n): (2*log(1-z))/(-2+z). - Wouter Meeussen
P(n) = 2^(-n) * Sum_{k=1..n} (binomial(n,k) + 1)/k.
a(n) = numerator( A003149(n)/n! ). - G. C. Greubel, May 24 2021

Extensions

References entries (Comtet, Graham et al., Letac, Nedemeyer) and Links entries (Singmaster, Sury) from Torsten.Sillke(AT)uni-bielefeld.de