cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A214432 Indices for which A046825, the numerator of sum( 1/binomial(n,i), i=0..n ), sets a new record.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 18, 19, 22, 23, 25, 26, 27, 28, 29, 30, 31, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 66, 67, 70, 71, 72, 73, 78, 79, 82, 83, 88, 89, 90, 91, 93, 94, 96, 97, 99, 100, 101, 102, 103, 106, 107, 108, 109, 110
Offset: 1

Views

Author

M. F. Hasler, Jul 17 2012

Keywords

Comments

It might be more interesting to consider the indices not in this sequence. A subsequence of these is A214440, indices where A046825 is not strictly increasing. - M. F. Hasler, Jul 19 2012

Programs

  • PARI
    m=0;for(n=1,999,(m>=t=A046825(n))&next;m=t;print1(n","))

A214440 Indices n for which A046825(n) is not larger than A046825(n-1).

Original entry on oeis.org

4, 8, 15, 16, 20, 24, 32, 34, 44, 48, 50, 56, 64, 68, 74, 75, 76, 80, 84, 85, 92, 95, 98, 104, 114, 116, 128, 132, 140, 144, 146, 152, 154, 160, 164, 170, 176, 184, 186, 194, 200, 202, 204, 208, 212, 216, 218, 220, 224, 234, 236, 244, 248, 256, 258, 260, 264, 266, 272
Offset: 1

Views

Author

M. F. Hasler, Jul 17 2012

Keywords

Crossrefs

See A214432 for the indices where A046825 sets a new record.

Programs

  • PARI
    m=0;for(n=1,9999,(m+0>=m=A046825(n))&print1(n","))

A214453 Odd indices n for which A046825(n) is not larger than A046825(n-1).

Original entry on oeis.org

15, 75, 85, 95, 299, 375, 377, 425, 465, 475, 485, 747, 901, 1057, 1241, 1271, 1875, 2125, 2375, 2425, 2475, 2485, 2495, 2597, 3473, 3955, 4015, 4531, 5055, 6877, 9039, 9375, 10519, 10553, 10625, 10933, 11397, 11875, 12125, 12375, 12425, 12475, 14415, 14659, 15763, 16485, 17869
Offset: 1

Views

Author

M. F. Hasler, Jul 19 2012

Keywords

Comments

Most terms of A214440 are even, which makes it interesting to look at the subsequence of odd terms.

Crossrefs

See A214432 for the indices where A046825 sets a new record.

Programs

  • PARI
    t=S=1; for(n=0,99999, t+0>=(t=numerator(S)) & bittest(n,0) & print1(n,","); S=S/2/(n+1)*(n+2)+1)

A003149 a(n) = Sum_{k=0..n} k!*(n - k)!.

Original entry on oeis.org

1, 2, 5, 16, 64, 312, 1812, 12288, 95616, 840960, 8254080, 89441280, 1060369920, 13649610240, 189550368000, 2824077312000, 44927447040000, 760034451456000, 13622700994560000, 257872110354432000, 5140559166898176000, 107637093007589376000, 2361827297364885504000
Offset: 0

Views

Author

Keywords

Comments

From Michael Somos, Feb 14 2002: (Start)
The sequence is the resistance between opposite corners of an (n+1)-dimensional hypercube of unit resistors, multiplied by (n+1)!.
The resistances for n+1 = 1,2,3,... are 1, 1, 5/6, 2/3, 8/15, 13/30, 151/420, 32/105, 83/315, 73/315, 1433/6930, ... (see A046878/A046879). (End)
Number of {12,21*,2*1}-avoiding signed permutations in the hyperoctahedral group.
a(n) is the sum of the reciprocals of the binomial coefficients C(n,k), multiplied by n!; example: a(4) = 4!*(1/1 + 1/4 + 1/6 + 1/4 + 1/1) = 64. - Philippe Deléham, May 12 2005
a(n) is the number of permutations on [n+1] that avoid the pattern 13-2|. The absence of a dash between 1 and 3 means the "1" and "3" must be consecutive in the permutation; the vertical bar means the "2" must occur at the end of the permutation. For example, 24153 fails to avoid this pattern: 243 is an offending subpermutation. - David Callan, Nov 02 2005
n!/a(n) is the probability that a random walk on an (n+1)-dimensional hypercube will visit the diagonally opposite vertex before it returns to its starting point. 2^n*a(n)/n! is the expected length of a random walk from one vertex of an (n+1)-dimensional hypercube to the diagonally opposite vertex (a walk which may include one or more passes through the starting point). These "random walk" examples are solutions to IBM's "Ponder This" puzzle for April, 2006. - Graeme McRae, Apr 02 2006
a(n) is the number of strong fixed points in all permutations of {1,2,...,n+1} (a permutation p of {1,2,...,n} is said to have j as a strong fixed point (splitter) if p(k)j for k>j). Example: a(2)=5 because the permutations of {1,2,3}, with marked strong fixed points, are: 1'2'3', 1'32, 312, 213', 231 and 321. - Emeric Deutsch, Oct 28 2008
Coefficients in the asymptotic expansion of exp(-2*x)*Ei(x)^2 for x -> inf, where Ei(x) is the exponential integral. - Vladimir Reshetnikov, Apr 24 2016

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (1.1.11 b, p.342).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Volume 1 (1986), p. 49. [From Emeric Deutsch, Oct 28 2008]

Crossrefs

Cf. A052186, A006932, A145878. - Emeric Deutsch, Oct 28 2008
Cf. A324495, A324496, A324497 (problem similar to the random walks on the hypercube).

Programs

  • GAP
    F:=Factorial;; List([0..20], n-> Sum([0..n], k-> F(k)*F(n-k)) ); # G. C. Greubel, Dec 29 2019
    
  • Magma
    F:=Factorial; [ (&+[F(k)*F(n-k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    seq( add(k!*(n-k)!, k=0..n), n=0..20); # G. C. Greubel, Dec 29 2019
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, n+1,
          ((3*n+1)*a(n-1)-n^2*a(n-2))/2)
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Aug 08 2025
  • Mathematica
    Table[Sum[k!(n-k)!,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 28 2012 *)
    Table[(n+1)!/2^n*Sum[2^k/(k+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 27 2012 *)
    Round@Table[-2 (n+1)! Re[LerchPhi[2, 1, n+2]], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 12 2015 *)
    Table[(n+1)!*Sum[Binomial[n+1, 2*j+1]/(2*j+1), {j, 0, n}]/2^n, {n, 0, 20}] (* Vaclav Kotesovec, Dec 04 2015 *)
    Series[Exp[-2x] ExpIntegralEi[x]^2, {x, Infinity, 20}][[3]] (* Vladimir Reshetnikov, Apr 24 2016 *)
    Table[2*(-1)^n * Sum[(2^k - 1) * StirlingS1[n, k] * BernoulliB[k], {k, 0, n}], {n, 1, 25}] (* Vaclav Kotesovec, Oct 04 2022 *)
  • PARI
    a(n)=sum(k=0,n,k!*(n-k)!)
    
  • PARI
    a(n)=if(n<0,0,(n+1)!*polcoeff(log(1-x+x^2*O(x^n))/(x/2-1),n+1))
    
  • PARI
    a(n) = my(A = 1, B = 1); for(k=1, n, B *= k; A = (n-k+1)*A + B); A \\ Mikhail Kurkov, Aug 08 2025
    
  • Python
    def a(n: int) -> int:
        if n < 2: return n + 1
        app, ap = 1, 2
        for i in range(2, n + 1):
            app, ap = ap, ((3 * i + 1) * ap - (i * i) * app) >> 1
        return ap
    print([a(n) for n in range(23)])  # Peter Luschny, Aug 08 2025
  • Sage
    f=factorial; [sum(f(k)*f(n-k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Dec 29 2019
    

Formula

a(n) = n! + ((n+1)/2)*a(n-1), n >= 1. - Leroy Quet, Sep 06 2002
a(n) = ((3n+1)*a(n-1) - n^2*a(n-2))/2, n >= 2. - David W. Wilson, Sep 06 2002; corrected by N. Sato, Jan 27 2010
G.f.: (Sum_{k>=0} k!*x^k)^2. - Vladeta Jovovic, Aug 30 2002
E.g.f: log(1-x)/(x/2 - 1) if offset 1.
Convolution of A000142 [factorial numbers] with itself. - Ross La Haye, Oct 29 2004
a(n) = Sum_{k=0..n+1} k*A145878(n+1,k). - Emeric Deutsch, Oct 28 2008
a(n) = A084938(n+2,2). - Philippe Deléham, Dec 17 2008
a(n) = 2*Integral_{t=0..oo} Ei(t)*exp(-2*t)*t^(n+1) where Ei is the exponential integral function. - Groux Roland, Dec 09 2010
Empirical: a(n-1) = 2^(-n)*(A103213(n) + n!*H(n)) with H(n) harmonic number of order n. - Groux Roland, Dec 18 2010; offset fixed by Vladimir Reshetnikov, Apr 24 2016
O.g.f.: 1/(1-I(x))^2 where I(x) is o.g.f. for A003319. - Geoffrey Critzer, Apr 27 2012
a(n) ~ 2*n!. - Vaclav Kotesovec, Oct 04 2012
a(n) = (n+1)!/2^n * Sum_{k=0..n} 2^k/(k+1). - Vaclav Kotesovec, Oct 27 2012
E.g.f.: 2/((x-1)*(x-2)) + 2*x/(x-2)^2*G(0) where G(k) = 1 + x*(2*k+1)/(2*(k+1) - 4*x*(k+1)^2/(2*x*(k+1) + (2*k+3)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 14 2012
a(n) = 2 * n! * (1 + Sum_{k>=1} A005649(k-1)/n^k). - Vaclav Kotesovec, Aug 01 2015
From Vladimir Reshetnikov, Nov 12 2015: (Start)
a(n) = -(n+1)!*Re(Beta(2; n+2, 0))/2^(n+1), where Beta(z; a, b) is the incomplete Beta function.
a(n) = -2*(n+1)!*Re(LerchPhi(2, 1, n+2)), where LerchPhi(z, s, a) is the Lerch transcendent. (End)
a(n) = (n+1)!*(H(n+1) + (n+1)*hypergeom([1, 1, -n], [2, 2], -1))/2^(n+1), where H(n) is the harmonic number. - Vladimir Reshetnikov, Apr 24 2016
Expansion of square of continued fraction 1/(1 - x/(1 - x/(1 - 2*x/(1 - 2*x/(1 - 3*x/(1 - 3*x/(1 - ...))))))). - Ilya Gutkovskiy, Apr 19 2017
a(n) = Sum_{k=0..n+1} (-1)^(n-k)*A226158(k)*Stirling1(n+1, k). - Mélika Tebni, Feb 22 2022
E.g.f.: x/((1-x)*(2-x))-(2*log(1-x))/(2-x)^2+1/(1-x). - Vladimir Kruchinin, Dec 17 2022

Extensions

More terms from Michel ten Voorde, Apr 11 2001

A046878 Numerator of (1/n)*Sum_{k=0..n-1} 1/binomial(n-1,k) for n>0 else 0.

Original entry on oeis.org

0, 1, 1, 5, 2, 8, 13, 151, 32, 83, 73, 1433, 647, 15341, 28211, 10447, 1216, 19345, 18181, 651745, 1542158, 1463914, 2786599, 122289917, 29229544, 140001721, 134354573, 774885169, 745984697, 41711914513, 80530073893, 4825521853483
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the numerator of (1/2^n)*Sum_{k=1..n} 2^k/k. - Groux Roland, Jan 13 2009

Examples

			Rational sequence starts: 0, 1, 1, 5/6, 2/3, 8/15, 13/30, 151/420, 32/105,...
		

Crossrefs

See A046825, the main entry for this sequence. Cf. A046879.

Programs

  • Maple
    a := n -> -2*LerchPhi(2,1,n+1)-I*Pi/2^n:
    seq(numer(simplify(a(n))),n=0..31); # Peter Luschny, Nov 20 2015
  • Mathematica
    a[0] = 0; a[n_] := (1/n) Sum[1/Binomial[n-1, k], {k, 0, n-1}] // Numerator; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Sep 28 2016 *)
  • Maxima
    a(n):=if n=0 then 0 else num((-1)^(n-1)/(n-1)!*sum(2^k*bern(k)*(stirling1(n-1,k)),k,0,n-1)); /* Vladimir Kruchinin, Nov 20 2015 */
    
  • PARI
    vector(40, n, n--; numerator((1/2^n)*sum(k=1, n, 2^k/k))) \\ Altug Alkan, Nov 20 2015

Formula

a(n) = numerator((-1)^(n-1)/(n-1)!*Sum_{k=0..n-1} 2^k*bernoulli(k)* stirling1(n-1,k)), n>0, a(0)=0. - Vladimir Kruchinin, Nov 20 2015
a(n) = numerator(-2*LerchPhi(2,1,n+1)-i*Pi/2^n). - Peter Luschny, Nov 20 2015

A046879 Denominator of (1/n)*Sum_{k=0..n-1} 1/binomial(n-1,k) for n>0 else 1.

Original entry on oeis.org

1, 1, 1, 6, 3, 15, 30, 420, 105, 315, 315, 6930, 3465, 90090, 180180, 72072, 9009, 153153, 153153, 5819814, 14549535, 14549535, 29099070, 1338557220, 334639305, 1673196525, 1673196525, 10039179150, 10039179150, 582272390700, 1164544781400
Offset: 0

Views

Author

Keywords

Comments

For n>=1 a(n) is the denominator of (1/2^n)*Sum_{k=1..n} 2^k/k. - Groux Roland, Jan 13 2009

Crossrefs

See A046825, the main entry for this sequence. Cf. A046878.

Programs

  • Maple
    a := n -> -2*LerchPhi(2,1,n+1)-I*Pi/2^n:
    seq(denom(simplify(a(n))),n=0..30); # Peter Luschny, Nov 20 2015
  • Mathematica
    Denominator[Simplify[-2*LerchPhi[2, 1, # + 1] - I*Pi/2^#]] & /@
    Range[0, 100] (* Julien Kluge, Jul 21 2016 *)
  • Maxima
    a(n):=if n=0 then 1 else denom((-1)^(n-1)/(n-1)!*sum(2^k*bern(k)*(stirling1(n-1,k)),k,0,n-1)); /* Vladimir Kruchinin, Nov 20 2015 */
    
  • PARI
    vector(30, n, n--; denominator((1/2^n)*sum(k=1, n, 2^k/k))) \\ Altug Alkan, Nov 20 2015

Formula

a(n) = denominator((-1)^(n-1)/(n-1)!*Sum_{k=0..n-1} 2^k*bern(k) * stirling1(n-1,k)), n>0, a(0)=1. - Vladimir Kruchinin, Nov 20 2015
a(n) = denominator(-2*LerchPhi(2,1,n+1)-i*Pi/2^n). - Peter Luschny, Nov 20 2015

A100516 Numerator of Sum_{k=0..n} 1/binomial(n,k)^2.

Original entry on oeis.org

1, 2, 9, 20, 155, 21, 7441, 3224, 5697, 3575, 28523, 27183, 70357417, 4661447, 386395, 8959408, 10028928779, 525966759, 1476346738309, 35051863075, 847581175, 709068173, 62385202783, 20340152122, 119483756745025, 4418168441921, 311960929172031
Offset: 0

Views

Author

N. J. A. Sloane, Nov 25 2004

Keywords

Examples

			1, 2, 9/4, 20/9, 155/72, 21/10, 7441/3600, 3224/1575, 5697/2800, 3575/1764, 28523/14112, 27183/13475, 70357417/34927200, 4661447/2316600, ... = A100516/A100517
		

References

  • H. W. Gould, Combinatorial Identities, Morgantown, 1972, p. 50, formula (5.2).

Crossrefs

Programs

  • Magma
    [Numerator( (&+[1/Binomial(n,k)^2: k in [0..n]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
    
  • Mathematica
    Table[3*(n+1)^2/((n+2)*(2*n+3)*CatalanNumber[n+1])*Sum[((k+ 1)/k)*CatalanNumber[k], {k,n+1}], {n,0,40}]//Numerator (* G. C. Greubel, Jun 24 2022 *)
  • PARI
    a(n) = numerator(sum(k=0, n, 1/binomial(n,k)^2)); \\ Michel Marcus, Jun 24 2022
  • SageMath
    [numerator(sum(1/binomial(n,k)^2 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
    

Formula

a(n) = numerator( 3*(n+1)^2/((n+2)*(2*n+3)*Catalan(n+1)) * Sum_{k=1..n+1} binomial(2*k, k)/k ). - G. C. Greubel, Jun 24 2022

A051389 Number of resistance values that can be constructed using exactly n 1-ohm resistors in series or parallel but not with fewer resistors.

Original entry on oeis.org

1, 2, 4, 8, 20, 42, 102, 250, 610, 1486, 3710, 9228, 23050, 57718, 145288, 365820, 922194, 2327914, 5885800, 14890796, 37701452, 95550472, 242325118, 614869792, 1561228066, 3966071764, 10080113232, 25630109268, 65194419268, 165890640468
Offset: 1

Views

Author

Keywords

Comments

If x and y require xn and yn resistors respectively, then (x+y) and 1/(1/x + 1/y) require no more than (xn+yn). Inspired by a sci.math posting by Miguel A. Lerma (lerma(AT)math.nwu.edu).
Let A(n) be the set of resistances equivalent to a network of n 1-ohm resistors using only series and parallel combinations. Then A048211(n) = card(A(n)). Let L(n) be the set of resistances that first appear in A(n), i.e. L(n) = A(n) \ (A(1) U ... U A(n-1)). Then a(n) = card(L(n)). - Antoine Mathys, Nov 22 2024
If a resistance is equivalent to a n-resistor circuit, then it is equivalent to a 4n-resistor circuit. There is therefore no upper bound on the size of the networks to which it is equivalent. - Antoine Mathys, Nov 22 2024

Examples

			The a(1) = 1 resistance value is 1 ohm.
The a(2) = 2 resistance values are {1/2, 2}.
The a(3) = 4 resistance values are {1/3, 2/3, 3/2, 3}.
The a(4) = 8 resistance values are {1/4, 2/5, 3/5, 3/4, 4/3, 5/3, 5/2, 4}.
The a(5) = 20 resistance values are {1/5, 2/7, 3/8, 3/7, 4/7, 5/8, 5/7, 4/5, 5/6, 6/7, 7/6, 6/5, 5/4, 7/5, 8/5, 7/4, 7/3, 8/3, 7/2, 5}.
E.g. 6/5 is made from two resistors in series in parallel with three resistors in series, since 6/5 = 1/(1/2 + 1/3). It cannot be obtained using fewer resistors.
		

Crossrefs

Formula

a(n) = A153588(n) - A153588(n-1) for n > 1. - Hugo Pfoertner, Nov 04 2020

Extensions

a(15)-a(21) from Jon E. Schoenfield, Aug 28 2006
Definition corrected by Jon E. Schoenfield, Aug 27 2006
a(22)-a(23) from Graeme McRae, Aug 18 2007
a(24)-a(25) from Antoine Mathys, Mar 20 2017
Definition changed to say "exactly". - N. J. A. Sloane, Nov 07 2020
Definition clarified by Antoine Mathys, Nov 22 2024
a(26)-a(30) from Antoine Mathys, Dec 05 2024

A100518 Numerator of Sum_{k=0..n} 1/binomial(n,k)^3.

Original entry on oeis.org

1, 2, 17, 56, 1759, 1009, 86831, 2322304, 85922, 1144667, 16019198113, 123357293, 21312406359367, 17061774340031, 27741170437991, 182851619022848, 167169857863289, 9857517443932187, 8844183281912559671, 197147246106875452361, 681198614358931646209
Offset: 0

Views

Author

N. J. A. Sloane, Nov 25 2004

Keywords

Examples

			1, 2, 17/8, 56/27, 1759/864, 1009/500, 86831/43200, 2322304/1157625, 85922/42875, 1144667/571536, 16019198113/8001504000, 123357293/61631955, ... = A100518/A100519.
		

Crossrefs

Programs

  • Magma
    [Numerator( (&+[1/Binomial(n,k)^3: k in [0..n]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
    
  • Mathematica
    Numerator[Table[Sum[1/Binomial[n,k]^3,{k,0,n}],{n,0,20}]] (* Harvey P. Dale, Sep 28 2012 *)
  • PARI
    a(n) = numerator(sum(k=0, n, 1/binomial(n,k)^3)); \\ Michel Marcus, Jun 24 2022
  • SageMath
    [numerator(sum(1/binomial(n,k)^3 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
    

Formula

a(n) = numerator( Sum_{k=0..n} 1/binomial(n,k)^3 ).

A046826 Denominator of Sum_{k=0..n} 1/binomial(n,k).

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 60, 105, 35, 63, 630, 1155, 6930, 12870, 24024, 9009, 9009, 17017, 306306, 2909907, 692835, 1322685, 58198140, 111546435, 66927861, 128707425, 371821450, 717084225, 20078358300, 38818159380, 2329089562800, 4512611027925
Offset: 0

Views

Author

Keywords

Examples

			1, 2, 5/2, 8/3, 8/3, 13/5, 151/60, 256/105, 83/35, 146/63, 1433/630, 2588/1155, 15341/6930, 28211/12870, 52235/24024, 19456/9009, 19345/9009, ... = A046825/A046826
		

References

  • See A046825, which is the main entry.

Crossrefs

Programs

  • Magma
    [Denominator((&+[1/Binomial(n,j): j in [0..n]])): n in [0..40]]; // G. C. Greubel, May 24 2021
    
  • Mathematica
    Denominator[Table[Sum[1/Binomial[n,k],{k,0,n}],{n,0,40}]] (* Harvey P. Dale, Nov 05 2011 *)
  • Sage
    [denominator(sum(1/binomial(n,j) for j in (0..n))) for n in (0..40)] # G. C. Greubel, May 24 2021

Formula

a(n) = denominator( A003149(n)/n! ). - G. C. Greubel, May 24 2021
Showing 1-10 of 23 results. Next