A100518
Numerator of Sum_{k=0..n} 1/binomial(n,k)^3.
Original entry on oeis.org
1, 2, 17, 56, 1759, 1009, 86831, 2322304, 85922, 1144667, 16019198113, 123357293, 21312406359367, 17061774340031, 27741170437991, 182851619022848, 167169857863289, 9857517443932187, 8844183281912559671, 197147246106875452361, 681198614358931646209
Offset: 0
1, 2, 17/8, 56/27, 1759/864, 1009/500, 86831/43200, 2322304/1157625, 85922/42875, 1144667/571536, 16019198113/8001504000, 123357293/61631955, ... = A100518/A100519.
-
[Numerator( (&+[1/Binomial(n,k)^3: k in [0..n]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
-
Numerator[Table[Sum[1/Binomial[n,k]^3,{k,0,n}],{n,0,20}]] (* Harvey P. Dale, Sep 28 2012 *)
-
a(n) = numerator(sum(k=0, n, 1/binomial(n,k)^3)); \\ Michel Marcus, Jun 24 2022
-
[numerator(sum(1/binomial(n,k)^3 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
A100517
Denominator of Sum_{k=0..n} 1/binomial(n,k)^2.
Original entry on oeis.org
1, 1, 4, 9, 72, 10, 3600, 1575, 2800, 1764, 14112, 13475, 34927200, 2316600, 192192, 4459455, 4994589600, 262061800, 735869534400, 17476901442, 422721728, 353723760, 31127690880, 10150725585, 59637542956992, 2205530434800, 155748568976000, 50956005028500
Offset: 0
1, 2, 9/4, 20/9, 155/72, 21/10, 7441/3600, 3224/1575, 5697/2800, 3575/1764, 28523/14112, 27183/13475, 70357417/34927200, 4661447/2316600, ... = A100516/A100517
- H. W. Gould, Combinatorial Identities, Morgantown, 1972, p. 50, formula (5.2).
-
[Denominator( (&+[1/Binomial(n,k)^2: k in [0..n]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
-
Table[Sum[1/Binomial[n,k]^2,{k,0,n}],{n,0,30}]//Denominator (* Harvey P. Dale, Apr 01 2019 *)
-
a(n) = denominator(sum(k=0, n, 1/binomial(n,k)^2)); \\ Michel Marcus, Jun 24 2022
-
[denominator(sum(1/binomial(n,k)^2 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
A100519
Denominator of Sum_{k=0..n} 1/binomial(n,k)^3.
Original entry on oeis.org
1, 1, 8, 27, 864, 500, 43200, 1157625, 42875, 571536, 8001504000, 61631955, 10650001824000, 8526987612000, 13865513485824, 91398648466125, 83564478597600, 4927753743913000, 4421332282230864000, 98559233902419862572, 340556687709473664000
Offset: 0
1, 2, 17/8, 56/27, 1759/864, 1009/500, 86831/43200, 2322304/1157625, 85922/42875, 1144667/571536, 16019198113/8001504000, 123357293/61631955, ... = A100518/A100519.
-
[Denominator( (&+[1/Binomial(n,k)^3: k in [0..n]]) ): n in [0..30]]; // G. C. Greubel, Jun 24 2022
-
Table[Denominator[Sum[1/Binomial[n,k]^3, {k,0,n}]], {n,0,30}] (* G. C. Greubel, Jun 24 2022 *)
-
a(n) = denominator(sum(k=0, n, 1/binomial(n,k)^3)); \\ Michel Marcus, Jun 25 2022
-
[denominator(sum(1/binomial(n,k)^3 for k in (0..n))) for n in (0..30)] # G. C. Greubel, Jun 24 2022
A100520
Numerator of Sum_{k=0..2*n} (-1)^k/binomial(2*n, k)^2.
Original entry on oeis.org
1, 7, 137, 2341, 38629, 1257937, 50881679, 164078209, 18480100619, 1187779852639, 4086043585673, 46823724627623, 825926870076593, 8826243587390221, 6435629123661395137, 721766119107018403553, 5255377541226932317019, 19239461977895120106181, 2618947765106118753941303
Offset: 0
1, 7/4, 137/72, 2341/1200, 38629/19600, 1257937/635040, 50881679/25613280, 164078209/82450368, 18480100619/9275666400, 1187779852639/595703908800, ... = A100520/A100521
-
[Numerator( (&+[(-1)^k/Binomial(2*n,k)^2: k in [0..2*n]]) ): n in [0..30]]; // G. C. Greubel, Jun 24 2022
-
Table[Numerator[Sum[(-1)^k/Binomial[2*n,k]^2, {k,0,2*n}]], {n,0,30}] (* G. C. Greubel, Jun 24 2022 *)
-
a(n) = numerator(sum(k=0, 2*n, (-1)^k/binomial(2*n, k)^2)); \\ Michel Marcus, Jun 25 2022
-
[numerator(sum((-1)^k/binomial(2*n,k)^2 for k in (0..2*n))) for n in (0..30)] # G. C. Greubel, Jun 24 2022
A279055
Self-convolution of squares of factorial numbers (A001044).
Original entry on oeis.org
1, 2, 9, 80, 1240, 30240, 1071504, 51996672, 3307723776, 266872320000, 26615381760000, 3214252921651200, 462189467175321600, 78024380924038348800, 15279632043682406400000, 3435553774431004262400000, 879010223384483132866560000, 253916900613208108255150080000
Offset: 0
-
Table[Sum[(k!*(n-k)!)^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 05 2016 *)
A122184
Numerator of Sum_{k=0..2n} (-1)^k/C(2n,k)^3.
Original entry on oeis.org
1, 15, 1705, 47789, 1369377, 213162301, 43005554527, 14505995375, 23869750002797, 2384790127843063, 624724994927411, 24386251366041479501, 2042595777439018142725, 11191251831905709132993
Offset: 0
Cf.
A046825 = Numerator of Sum_{k=0..n} 1/C(n, k). Cf.
A100516 = Numerator of Sum_{k=0..n} 1/C(n, k)^2. Cf.
A100518 = Numerator of Sum_{k=0..n} 1/C(n, k)^3. Cf.
A100520 = Numerator of Sum_{k=0..2n} (-1)^k/C(2n, k)^2.
-
Table[ Numerator[ Sum[ (-1)^k / Binomial[2n,k]^3, {k,0,2n} ] ], {n,0,25} ]
A128152
Numerator of Sum_{k=0..n} 1/binomial(n,k)^4.
Original entry on oeis.org
1, 2, 33, 164, 20825, 10017, 25940593, 34743416, 3074035689, 672229195, 13443874324243, 431453199593, 53678600587865227, 33768054132971557, 813464644344955, 748569723383876272, 67454811525665973337193
Offset: 0
Cf.
A046825 (numerator of Sum_{k=0..n} 1/C(n, k)).
Cf.
A100516 (numerator of Sum_{k=0..n} 1/C(n, k)^2).
Cf.
A100518 (numerator of Sum_{k=0..n} 1/C(n, k)^3).
-
Table[ Numerator[ Sum[ 1 / Binomial[n,k]^4, {k,0,n} ] ], {n,0,50} ]
Showing 1-7 of 7 results.
Comments