A100516
Numerator of Sum_{k=0..n} 1/binomial(n,k)^2.
Original entry on oeis.org
1, 2, 9, 20, 155, 21, 7441, 3224, 5697, 3575, 28523, 27183, 70357417, 4661447, 386395, 8959408, 10028928779, 525966759, 1476346738309, 35051863075, 847581175, 709068173, 62385202783, 20340152122, 119483756745025, 4418168441921, 311960929172031
Offset: 0
1, 2, 9/4, 20/9, 155/72, 21/10, 7441/3600, 3224/1575, 5697/2800, 3575/1764, 28523/14112, 27183/13475, 70357417/34927200, 4661447/2316600, ... = A100516/A100517
- H. W. Gould, Combinatorial Identities, Morgantown, 1972, p. 50, formula (5.2).
-
[Numerator( (&+[1/Binomial(n,k)^2: k in [0..n]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
-
Table[3*(n+1)^2/((n+2)*(2*n+3)*CatalanNumber[n+1])*Sum[((k+ 1)/k)*CatalanNumber[k], {k,n+1}], {n,0,40}]//Numerator (* G. C. Greubel, Jun 24 2022 *)
-
a(n) = numerator(sum(k=0, n, 1/binomial(n,k)^2)); \\ Michel Marcus, Jun 24 2022
-
[numerator(sum(1/binomial(n,k)^2 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
A100518
Numerator of Sum_{k=0..n} 1/binomial(n,k)^3.
Original entry on oeis.org
1, 2, 17, 56, 1759, 1009, 86831, 2322304, 85922, 1144667, 16019198113, 123357293, 21312406359367, 17061774340031, 27741170437991, 182851619022848, 167169857863289, 9857517443932187, 8844183281912559671, 197147246106875452361, 681198614358931646209
Offset: 0
1, 2, 17/8, 56/27, 1759/864, 1009/500, 86831/43200, 2322304/1157625, 85922/42875, 1144667/571536, 16019198113/8001504000, 123357293/61631955, ... = A100518/A100519.
-
[Numerator( (&+[1/Binomial(n,k)^3: k in [0..n]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
-
Numerator[Table[Sum[1/Binomial[n,k]^3,{k,0,n}],{n,0,20}]] (* Harvey P. Dale, Sep 28 2012 *)
-
a(n) = numerator(sum(k=0, n, 1/binomial(n,k)^3)); \\ Michel Marcus, Jun 24 2022
-
[numerator(sum(1/binomial(n,k)^3 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
A100519
Denominator of Sum_{k=0..n} 1/binomial(n,k)^3.
Original entry on oeis.org
1, 1, 8, 27, 864, 500, 43200, 1157625, 42875, 571536, 8001504000, 61631955, 10650001824000, 8526987612000, 13865513485824, 91398648466125, 83564478597600, 4927753743913000, 4421332282230864000, 98559233902419862572, 340556687709473664000
Offset: 0
1, 2, 17/8, 56/27, 1759/864, 1009/500, 86831/43200, 2322304/1157625, 85922/42875, 1144667/571536, 16019198113/8001504000, 123357293/61631955, ... = A100518/A100519.
-
[Denominator( (&+[1/Binomial(n,k)^3: k in [0..n]]) ): n in [0..30]]; // G. C. Greubel, Jun 24 2022
-
Table[Denominator[Sum[1/Binomial[n,k]^3, {k,0,n}]], {n,0,30}] (* G. C. Greubel, Jun 24 2022 *)
-
a(n) = denominator(sum(k=0, n, 1/binomial(n,k)^3)); \\ Michel Marcus, Jun 25 2022
-
[denominator(sum(1/binomial(n,k)^3 for k in (0..n))) for n in (0..30)] # G. C. Greubel, Jun 24 2022
A279055
Self-convolution of squares of factorial numbers (A001044).
Original entry on oeis.org
1, 2, 9, 80, 1240, 30240, 1071504, 51996672, 3307723776, 266872320000, 26615381760000, 3214252921651200, 462189467175321600, 78024380924038348800, 15279632043682406400000, 3435553774431004262400000, 879010223384483132866560000, 253916900613208108255150080000
Offset: 0
-
Table[Sum[(k!*(n-k)!)^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 05 2016 *)
Showing 1-4 of 4 results.
Comments