cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A100516 Numerator of Sum_{k=0..n} 1/binomial(n,k)^2.

Original entry on oeis.org

1, 2, 9, 20, 155, 21, 7441, 3224, 5697, 3575, 28523, 27183, 70357417, 4661447, 386395, 8959408, 10028928779, 525966759, 1476346738309, 35051863075, 847581175, 709068173, 62385202783, 20340152122, 119483756745025, 4418168441921, 311960929172031
Offset: 0

Views

Author

N. J. A. Sloane, Nov 25 2004

Keywords

Examples

			1, 2, 9/4, 20/9, 155/72, 21/10, 7441/3600, 3224/1575, 5697/2800, 3575/1764, 28523/14112, 27183/13475, 70357417/34927200, 4661447/2316600, ... = A100516/A100517
		

References

  • H. W. Gould, Combinatorial Identities, Morgantown, 1972, p. 50, formula (5.2).

Crossrefs

Programs

  • Magma
    [Numerator( (&+[1/Binomial(n,k)^2: k in [0..n]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
    
  • Mathematica
    Table[3*(n+1)^2/((n+2)*(2*n+3)*CatalanNumber[n+1])*Sum[((k+ 1)/k)*CatalanNumber[k], {k,n+1}], {n,0,40}]//Numerator (* G. C. Greubel, Jun 24 2022 *)
  • PARI
    a(n) = numerator(sum(k=0, n, 1/binomial(n,k)^2)); \\ Michel Marcus, Jun 24 2022
  • SageMath
    [numerator(sum(1/binomial(n,k)^2 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
    

Formula

a(n) = numerator( 3*(n+1)^2/((n+2)*(2*n+3)*Catalan(n+1)) * Sum_{k=1..n+1} binomial(2*k, k)/k ). - G. C. Greubel, Jun 24 2022

A100518 Numerator of Sum_{k=0..n} 1/binomial(n,k)^3.

Original entry on oeis.org

1, 2, 17, 56, 1759, 1009, 86831, 2322304, 85922, 1144667, 16019198113, 123357293, 21312406359367, 17061774340031, 27741170437991, 182851619022848, 167169857863289, 9857517443932187, 8844183281912559671, 197147246106875452361, 681198614358931646209
Offset: 0

Views

Author

N. J. A. Sloane, Nov 25 2004

Keywords

Examples

			1, 2, 17/8, 56/27, 1759/864, 1009/500, 86831/43200, 2322304/1157625, 85922/42875, 1144667/571536, 16019198113/8001504000, 123357293/61631955, ... = A100518/A100519.
		

Crossrefs

Programs

  • Magma
    [Numerator( (&+[1/Binomial(n,k)^3: k in [0..n]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
    
  • Mathematica
    Numerator[Table[Sum[1/Binomial[n,k]^3,{k,0,n}],{n,0,20}]] (* Harvey P. Dale, Sep 28 2012 *)
  • PARI
    a(n) = numerator(sum(k=0, n, 1/binomial(n,k)^3)); \\ Michel Marcus, Jun 24 2022
  • SageMath
    [numerator(sum(1/binomial(n,k)^3 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
    

Formula

a(n) = numerator( Sum_{k=0..n} 1/binomial(n,k)^3 ).

A100519 Denominator of Sum_{k=0..n} 1/binomial(n,k)^3.

Original entry on oeis.org

1, 1, 8, 27, 864, 500, 43200, 1157625, 42875, 571536, 8001504000, 61631955, 10650001824000, 8526987612000, 13865513485824, 91398648466125, 83564478597600, 4927753743913000, 4421332282230864000, 98559233902419862572, 340556687709473664000
Offset: 0

Views

Author

N. J. A. Sloane, Nov 25 2004

Keywords

Examples

			1, 2, 17/8, 56/27, 1759/864, 1009/500, 86831/43200, 2322304/1157625, 85922/42875, 1144667/571536, 16019198113/8001504000, 123357293/61631955, ... = A100518/A100519.
		

Crossrefs

Programs

  • Magma
    [Denominator( (&+[1/Binomial(n,k)^3: k in [0..n]]) ): n in [0..30]]; // G. C. Greubel, Jun 24 2022
    
  • Mathematica
    Table[Denominator[Sum[1/Binomial[n,k]^3, {k,0,n}]], {n,0,30}] (* G. C. Greubel, Jun 24 2022 *)
  • PARI
    a(n) = denominator(sum(k=0, n, 1/binomial(n,k)^3)); \\ Michel Marcus, Jun 25 2022
  • SageMath
    [denominator(sum(1/binomial(n,k)^3 for k in (0..n))) for n in (0..30)] # G. C. Greubel, Jun 24 2022
    

Formula

a(n) = denominator( Sum_{k=0..n} 1/binomial(n,k)^3 ).

A279055 Self-convolution of squares of factorial numbers (A001044).

Original entry on oeis.org

1, 2, 9, 80, 1240, 30240, 1071504, 51996672, 3307723776, 266872320000, 26615381760000, 3214252921651200, 462189467175321600, 78024380924038348800, 15279632043682406400000, 3435553774431004262400000, 879010223384483132866560000, 253916900613208108255150080000
Offset: 0

Views

Author

Arman Maesumi, Dec 04 2016

Keywords

Comments

a(n) = (n!)^2 * Sum_{i=0..n} (binomial(n,i)^(-2)).
Consider a triangle ABC with area p. Let points X, Y, Z be randomly and uniformly chosen on sides BC, CA, BA. Let r = area of XYZ. Then the average or expected value of (r/p)^n = a(n)/(n!^2 * (n+1)^3).
a(n) = (3*(n+1)^4 *(n!)^4 /(2n+3)!) * Sum_{i=1..n+1} ((1/i)* binomial(2i, i)), see Sprugnoli Formula 5.2 as noted by Markus Scheuer.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(k!*(n-k)!)^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 05 2016 *)

Formula

a(n) = Sum_{i=0..n} (i! * (n-i)!)^2.
a(n) ~ 2*(n!)^2. - Vaclav Kotesovec, Dec 05 2016
a(n) = A001044(n)*A100516(n)/A100517(n). - Alois P. Heinz, Feb 21 2023

Extensions

Definition clarified by Georg Fischer, Feb 21 2023
Showing 1-4 of 4 results.