A100516
Numerator of Sum_{k=0..n} 1/binomial(n,k)^2.
Original entry on oeis.org
1, 2, 9, 20, 155, 21, 7441, 3224, 5697, 3575, 28523, 27183, 70357417, 4661447, 386395, 8959408, 10028928779, 525966759, 1476346738309, 35051863075, 847581175, 709068173, 62385202783, 20340152122, 119483756745025, 4418168441921, 311960929172031
Offset: 0
1, 2, 9/4, 20/9, 155/72, 21/10, 7441/3600, 3224/1575, 5697/2800, 3575/1764, 28523/14112, 27183/13475, 70357417/34927200, 4661447/2316600, ... = A100516/A100517
- H. W. Gould, Combinatorial Identities, Morgantown, 1972, p. 50, formula (5.2).
-
[Numerator( (&+[1/Binomial(n,k)^2: k in [0..n]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
-
Table[3*(n+1)^2/((n+2)*(2*n+3)*CatalanNumber[n+1])*Sum[((k+ 1)/k)*CatalanNumber[k], {k,n+1}], {n,0,40}]//Numerator (* G. C. Greubel, Jun 24 2022 *)
-
a(n) = numerator(sum(k=0, n, 1/binomial(n,k)^2)); \\ Michel Marcus, Jun 24 2022
-
[numerator(sum(1/binomial(n,k)^2 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
A100517
Denominator of Sum_{k=0..n} 1/binomial(n,k)^2.
Original entry on oeis.org
1, 1, 4, 9, 72, 10, 3600, 1575, 2800, 1764, 14112, 13475, 34927200, 2316600, 192192, 4459455, 4994589600, 262061800, 735869534400, 17476901442, 422721728, 353723760, 31127690880, 10150725585, 59637542956992, 2205530434800, 155748568976000, 50956005028500
Offset: 0
1, 2, 9/4, 20/9, 155/72, 21/10, 7441/3600, 3224/1575, 5697/2800, 3575/1764, 28523/14112, 27183/13475, 70357417/34927200, 4661447/2316600, ... = A100516/A100517
- H. W. Gould, Combinatorial Identities, Morgantown, 1972, p. 50, formula (5.2).
-
[Denominator( (&+[1/Binomial(n,k)^2: k in [0..n]]) ): n in [0..40]]; // G. C. Greubel, Jun 24 2022
-
Table[Sum[1/Binomial[n,k]^2,{k,0,n}],{n,0,30}]//Denominator (* Harvey P. Dale, Apr 01 2019 *)
-
a(n) = denominator(sum(k=0, n, 1/binomial(n,k)^2)); \\ Michel Marcus, Jun 24 2022
-
[denominator(sum(1/binomial(n,k)^2 for k in (0..n))) for n in (0..40)] # G. C. Greubel, Jun 24 2022
A100519
Denominator of Sum_{k=0..n} 1/binomial(n,k)^3.
Original entry on oeis.org
1, 1, 8, 27, 864, 500, 43200, 1157625, 42875, 571536, 8001504000, 61631955, 10650001824000, 8526987612000, 13865513485824, 91398648466125, 83564478597600, 4927753743913000, 4421332282230864000, 98559233902419862572, 340556687709473664000
Offset: 0
1, 2, 17/8, 56/27, 1759/864, 1009/500, 86831/43200, 2322304/1157625, 85922/42875, 1144667/571536, 16019198113/8001504000, 123357293/61631955, ... = A100518/A100519.
-
[Denominator( (&+[1/Binomial(n,k)^3: k in [0..n]]) ): n in [0..30]]; // G. C. Greubel, Jun 24 2022
-
Table[Denominator[Sum[1/Binomial[n,k]^3, {k,0,n}]], {n,0,30}] (* G. C. Greubel, Jun 24 2022 *)
-
a(n) = denominator(sum(k=0, n, 1/binomial(n,k)^3)); \\ Michel Marcus, Jun 25 2022
-
[denominator(sum(1/binomial(n,k)^3 for k in (0..n))) for n in (0..30)] # G. C. Greubel, Jun 24 2022
A122184
Numerator of Sum_{k=0..2n} (-1)^k/C(2n,k)^3.
Original entry on oeis.org
1, 15, 1705, 47789, 1369377, 213162301, 43005554527, 14505995375, 23869750002797, 2384790127843063, 624724994927411, 24386251366041479501, 2042595777439018142725, 11191251831905709132993
Offset: 0
Cf.
A046825 = Numerator of Sum_{k=0..n} 1/C(n, k). Cf.
A100516 = Numerator of Sum_{k=0..n} 1/C(n, k)^2. Cf.
A100518 = Numerator of Sum_{k=0..n} 1/C(n, k)^3. Cf.
A100520 = Numerator of Sum_{k=0..2n} (-1)^k/C(2n, k)^2.
-
Table[ Numerator[ Sum[ (-1)^k / Binomial[2n,k]^3, {k,0,2n} ] ], {n,0,25} ]
A128152
Numerator of Sum_{k=0..n} 1/binomial(n,k)^4.
Original entry on oeis.org
1, 2, 33, 164, 20825, 10017, 25940593, 34743416, 3074035689, 672229195, 13443874324243, 431453199593, 53678600587865227, 33768054132971557, 813464644344955, 748569723383876272, 67454811525665973337193
Offset: 0
Cf.
A046825 (numerator of Sum_{k=0..n} 1/C(n, k)).
Cf.
A100516 (numerator of Sum_{k=0..n} 1/C(n, k)^2).
Cf.
A100518 (numerator of Sum_{k=0..n} 1/C(n, k)^3).
-
Table[ Numerator[ Sum[ 1 / Binomial[n,k]^4, {k,0,n} ] ], {n,0,50} ]
Showing 1-5 of 5 results.
Comments