cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A046896 Square elements of A046895.

Original entry on oeis.org

1, 9, 3969, 5041, 9409, 89401, 35010889, 478953225, 741091729, 282110761881, 370672751241, 1930979822409, 5548799536921, 6445713623281, 81193957971361
Offset: 0

Views

Author

Keywords

Comments

No other terms in first 200000 terms of A046895, though sequence is believed to be infinite.
No other terms in first 8000000 terms of A046895. - T. D. Noe, Mar 11 2009

Crossrefs

Cf. A046895.

Programs

  • Mathematica
    s = 0; Reap[ Do[s = s + SquaresR[4, n]; If[IntegerQ[Sqrt[s]], Print[{n, s}]; Sow[s]], {n, 0, 5*10^6}]][[2, 1]] (* Jean-François Alcover, Jul 02 2012 *)

Extensions

Extended by T. D. Noe, Mar 11 2009

A122510 Array T(d,n) = number of integer lattice points inside the d-dimensional hypersphere of radius sqrt(n), read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 1, 7, 9, 3, 1, 9, 19, 9, 5, 1, 11, 33, 27, 13, 5, 1, 13, 51, 65, 33, 21, 5, 1, 15, 73, 131, 89, 57, 21, 5, 1, 17, 99, 233, 221, 137, 81, 21, 5, 1, 19, 129, 379, 485, 333, 233, 81, 25, 7, 1, 21, 163, 577, 953, 797, 573, 297, 93, 29, 7, 1, 23, 201, 835, 1713, 1793
Offset: 1

Views

Author

R. J. Mathar, Oct 29 2006, Oct 31 2006

Keywords

Comments

Number of solutions to sum_(i=1,..,d) x[i]^2 <= n, x[i] in Z.

Examples

			T(2,2)=9 counts 1 pair (0,0) with sum 0, 4 pairs (-1,0),(1,0),(0,-1),(0,1) with sum 1 and 4 pairs (-1,-1),(-1,1),(1,1),(1,-1) with sum 2.
Array T(d,n) with rows d=1,2,3... and columns n=0,1,2,3.. reads
  1  3   3    3    5     5     5     5      5      7      7
  1  5   9    9   13    21    21    21     25     29     37
  1  7  19   27   33    57    81    81     93    123    147
  1  9  33   65   89   137   233   297    321    425    569
  1 11  51  131  221   333   573   893   1093   1343   1903
  1 13  73  233  485   797  1341  2301   3321   4197   5757
  1 15  99  379  953  1793  3081  5449   8893  12435  16859
  1 17 129  577 1713  3729  6865 12369  21697  33809  47921
  1 19 163  835 2869  7189 14581 27253  49861  84663 129303
  1 21 201 1161 4541 12965 29285 58085 110105 198765 327829
		

Crossrefs

Cf. A005408 (column 1), A058331 (column 2), A161712 (column 3), A055426 (column 4), A055427 (column 9)

Programs

  • Maple
    T := proc(d,n) local i,cnts ; cnts := 0 ; for i from -trunc(sqrt(n)) to trunc(sqrt(n)) do if n-i^2 >= 0 then if d > 1 then cnts := cnts+T(d-1,n-i^2) ; else cnts := cnts+1 ; fi ; fi ; od ; RETURN(cnts) ; end: for diag from 1 to 14 do for n from 0 to diag-1 do d := diag-n ; printf("%d,",T(d,n)) ; od ; od;
  • Mathematica
    t[d_, n_] := t[d, n] = t[d, n-1] + SquaresR[d, n]; t[d_, 0] = 1; Table[t[d-n, n], {d, 1, 12}, {n, 0, d-1}] // Flatten (* Jean-François Alcover, Jun 13 2013 *)

Formula

Recurrence along rows: T(d,n)=T(d,n-1)+A122141(d,n) for n>=1; T(d,n)=sum_{i=0..n} A122141(d,i). Recurrence along columns: cf. A123937.

A055410 Number of points in Z^4 of norm <= n.

Original entry on oeis.org

1, 9, 89, 425, 1281, 3121, 6577, 11833, 20185, 32633, 49689, 72465, 102353, 140945, 190121, 250553, 323721, 411913, 519025, 643441, 789905, 961721, 1156217, 1380729, 1638241, 1927297, 2257281, 2624417, 3035033, 3490601, 4000425
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=4 of A302997.
Cf. A046895 (sizes of successive clusters in Z^4 lattice).

Programs

  • C
    int A055410(int i)
    {
        const int ring = i*i;
        int result = 0;
        for(int a = -i; a <= i; a++)
            for(int b = -i; b <= i; b++)
                for(int c = -i; c <= i; c++)
                    for(int d = -i; d <= i; d++)
                        if ( ring >= a*a + b*b + c*c + d*d ) result++;
        return result;
    } /* Oskar Wieland, Apr 08 2013 */
    
  • Mathematica
    a[n_] := SeriesCoefficient[EllipticTheta[3, 0, x]^4/(1 - x), {x, 0, n^2}];
    a /@ Range[0, 30] (* Jean-François Alcover, Sep 23 2019, after Ilya Gutkovskiy *)
  • PARI
    N=66;  q='q+O('q^(N^2));
    t=Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^4/(1-q)); /* A046895 */
    vector(sqrtint(#t),n,t[(n-1)^2+1])
    /* Joerg Arndt, Apr 08 2013 */
    
  • Python
    from math import isqrt
    def A055410(n): return 1+((-(s:=n**2)*(n+1)+sum((q:=s//k)*((k<<1)+q+1) for k in range(1,n+1))&-1)<<2)+(((t:=isqrt(m:=s>>2))**2*(t+1)-sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1))&-1)<<4) # Chai Wah Wu, Jun 24 2024

Formula

a(n) = A046895(n^2). - Joerg Arndt, Apr 08 2013
a(n) = [x^(n^2)] theta_3(x)^4/(1 - x), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 14 2018

A175360 Partial sums of A000132.

Original entry on oeis.org

1, 11, 51, 131, 221, 333, 573, 893, 1093, 1343, 1903, 2463, 2863, 3423, 4223, 5183, 5913, 6393, 7633, 9153, 9905, 11025, 12865, 14465, 15665, 16875, 18875, 21115, 22715, 24395, 27115, 30315, 31795, 33235, 36915, 39955, 42205, 45005, 48285
Offset: 0

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

The 5th row of A122510.

Crossrefs

Programs

Formula

a(n^2) = A055411(n).
G.f.: theta_3(x)^5 / (1 - x). - Ilya Gutkovskiy, Feb 13 2021

A224213 Number of nonnegative solutions to x^2 + y^2 + z^2 + u^2 <= n.

Original entry on oeis.org

1, 5, 11, 15, 20, 32, 44, 48, 54, 70, 88, 100, 108, 124, 148, 160, 165, 189, 219, 235, 253, 281, 305, 317, 329, 357, 399, 427, 439, 475, 523, 539, 545, 581, 623, 659, 688, 716, 764, 792, 810, 858, 918, 946, 970, 1030, 1078, 1102, 1110, 1154, 1226, 1274, 1304, 1352
Offset: 0

Views

Author

Alex Ratushnyak, Apr 01 2013

Keywords

Crossrefs

Cf. A014110 (first differences).
Cf. A224212 (number of nonnegative solutions to x^2 + y^2 <= n).
Cf. A000606 (number of nonnegative solutions to x^2 + y^2 + z^2 <= n).
Cf. A046895 (number of integer solutions to x^2 + y^2 + z^2 + u^2 <= n).

Programs

  • Mathematica
    nn = 50; t = Table[0, {nn}]; Do[d = x^2 + y^2 + z^2 + u^2; If[0 < d <= nn, t[[d]]++], {x, 0, nn}, {y, 0, nn}, {z, 0, nn}, {u, 0, nn}]; Accumulate[Join[{1}, t]] (* T. D. Noe, Apr 01 2013 *)
  • Python
    for n in range(99):
      k = 0
      for x in range(99):
        s = x*x
        if s>n: break
        for y in range(99):
            sy = s + y*y
            if sy>n: break
            for z in range(99):
                sz = sy + z*z
                if sz>n: break
                for u in range(99):
                  su = sz + u*u
                  if su>n: break
                  k+=1
      print(str(k), end=', ')

Formula

G.f.: (1/(1 - x))*(Sum_{k>=0} x^(k^2))^4. - Ilya Gutkovskiy, Mar 14 2017

A341423 Number of positive solutions to (x_1)^2 + (x_2)^2 + (x_3)^2 + (x_4)^2 <= n^2.

Original entry on oeis.org

1, 5, 32, 94, 219, 437, 804, 1362, 2177, 3271, 4768, 6708, 9227, 12381, 16254, 20954, 26707, 33461, 41480, 50884, 61703, 74183, 88606, 104862, 123481, 144241, 167604, 193648, 222799, 254731, 290244, 329512, 372545, 419661, 470822, 526646, 587481, 653505
Offset: 2

Views

Author

Ilya Gutkovskiy, Feb 11 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(n=0, 0,
          add((s->`if`(s>n, 0, b(n-s, k-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n^2, 4):
    seq(a(n), n=2..39);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[3, 0, x] - 1)^4/(16 (1 - x)), {x, 0, n^2}], {n, 2, 39}]

Formula

a(n) is the coefficient of x^(n^2) in expansion of (theta_3(x) - 1)^4 / (16 * (1 - x)).

A055411 Number of points in Z^5 of norm <= n.

Original entry on oeis.org

1, 11, 221, 1343, 5913, 16875, 42205, 89527, 176377, 313259, 532509, 853399, 1322921, 1961211, 2846933, 4005143, 5554265, 7491355, 9977557, 13065527, 16907817, 21524019, 27179909, 33921671, 42036401, 51452803, 62664773
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=5 of A302997.
Cf. A122510.

Programs

Formula

a(n) = A122510(5,n^2). - R. J. Mathar, Apr 21 2010
a(n) = [x^(n^2)] theta_3(x)^5/(1 - x), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 14 2018

A341397 Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_8)^2 <= n.

Original entry on oeis.org

1, 17, 129, 577, 1713, 3729, 6865, 12369, 21697, 33809, 47921, 69233, 101041, 136209, 174737, 231185, 306049, 384673, 469457, 579217, 722353, 876465, 1025649, 1220337, 1481521, 1733537, 1979713, 2306753, 2697537, 3087777, 3482913, 3959585, 4558737, 5155473
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A000143.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 8)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 33; CoefficientList[Series[EllipticTheta[3, 0, x]^8/(1 - x), {x, 0, nmax}], x]
    Table[SquaresR[8, n], {n, 0, 33}] // Accumulate
  • Python
    from math import prod
    from sympy import factorint
    def A341397(n): return (sum((prod((p**(3*(e+1))-(1 if p&1 else 15))//(p**3-1) for p, e in factorint(m).items()) for m in range(1,n+1)))<<4)+1 # Chai Wah Wu, Jun 21 2024

Formula

G.f.: theta_3(x)^8 / (1 - x).
a(n^2) = A055414(n).

A302860 a(n) = [x^n] theta_3(x)^n/(1 - x), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 3, 9, 27, 89, 333, 1341, 5449, 21697, 84663, 327829, 1275739, 5020457, 19964623, 79883141, 320317827, 1284656385, 5152761033, 20686311261, 83182322509, 335110196569, 1352277390001, 5463873556381, 22097867887045, 89441286136465, 362277846495883, 1468465431530457
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 14 2018

Keywords

Comments

a(n) = number of integer lattice points inside the n-dimensional hypersphere of radius sqrt(n).

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[EllipticTheta[3, 0, x]^n/(1 - x), {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, -n, n}]^n, {x, 0, n}], {n, 0, 26}]

Formula

a(n) = A122510(n,n).
a(n) ~ c / (sqrt(n) * r^n), where r = 0.241970723224463308846762732757915397312... (= radius of convergence A166952) and c = 0.716940866073606328... - Vaclav Kotesovec, Apr 14 2018

A341396 Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_7)^2 <= n.

Original entry on oeis.org

1, 15, 99, 379, 953, 1793, 3081, 5449, 8893, 12435, 16859, 24419, 33659, 42115, 53203, 69779, 88273, 106081, 125821, 153541, 187981, 217437, 248741, 298469, 351277, 394691, 446939, 515259, 589307, 657683, 728803, 828259, 939223, 1029159, 1124023, 1260103
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A008451.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 7)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 35; CoefficientList[Series[EllipticTheta[3, 0, x]^7/(1 - x), {x, 0, nmax}], x]
    Table[SquaresR[7, n], {n, 0, 35}] // Accumulate
  • PARI
    my(q='q+O('q^(55))); Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^7/(1-q)) \\ Joerg Arndt, Jun 21 2024

Formula

G.f.: theta_3(x)^7 / (1 - x).
a(n^2) = A055413(n).
Showing 1-10 of 16 results. Next