A046933 Number of composites between successive primes.
0, 1, 1, 3, 1, 3, 1, 3, 5, 1, 5, 3, 1, 3, 5, 5, 1, 5, 3, 1, 5, 3, 5, 7, 3, 1, 3, 1, 3, 13, 3, 5, 1, 9, 1, 5, 5, 3, 5, 5, 1, 9, 1, 3, 1, 11, 11, 3, 1, 3, 5, 1, 9, 5, 5, 5, 1, 5, 3, 1, 9, 13, 3, 1, 3, 13, 5, 9, 1, 3, 5, 7, 5, 5, 3, 5, 7, 3, 7, 9, 1, 9, 1, 5, 3, 5, 7, 3, 1, 3, 11, 7, 3, 7, 3, 5, 11, 1, 17
Offset: 1
Examples
a(1) = 0 since 2 is adjacent to 3; a(2) = 1 since 4 is between 3 and 5; a(4) = 3 = 11 - 7 - 1, etc.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a046933 n = a046933_list !! (n-1) a046933_list = map (subtract 1) a001223_list -- Reinhard Zumkeller, Dec 12 2012
-
Maple
A046933:=n->ithprime(n+1)-ithprime(n)-1; seq(A046933(n), n=1..100); # Wesley Ivan Hurt, Apr 15 2014
-
Mathematica
Differences[Prime[Range[100]]] - 1 (* Arkadiusz Wesolowski, Nov 18 2011 *) Table[Prime[n + 1] - Prime[n] - 1, {n, 100}] (* Wesley Ivan Hurt, Apr 15 2014 *) Prepend[Drop[Length/@SequenceSplit[Range@Prime@100,{?PrimeQ}],1],0] (* _Federico Provvedi, Jul 19 2021 *)
-
PARI
a(n)=prime(n+1)-prime(n)-1 \\ Charles R Greathouse IV, Nov 20 2012
-
Python
from sympy import prime def A046933(n): return prime(n+1)-prime(n)-1 # Chai Wah Wu, Jan 02 2024
Formula
a(n) = A001223(n) - 1.
a(n) = 2*A028334(n) - 1 for n>1. - Giovanni Teofilatto, Apr 19 2010
a(n) = Sum_{i=1..n-1} A036263(i). - Daniel Forgues, Apr 07 2014
Comments