cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046992 a(n) = Sum_{k=1..n} pi(k) (cf. A000720).

Original entry on oeis.org

0, 1, 3, 5, 8, 11, 15, 19, 23, 27, 32, 37, 43, 49, 55, 61, 68, 75, 83, 91, 99, 107, 116, 125, 134, 143, 152, 161, 171, 181, 192, 203, 214, 225, 236, 247, 259, 271, 283, 295, 308, 321, 335, 349, 363, 377, 392, 407, 422, 437, 452, 467, 483, 499, 515, 531, 547, 563, 580, 597, 615, 633, 651, 669
Offset: 1

Views

Author

Keywords

Comments

a(n) = A002815(n) - n. - Reinhard Zumkeller, Feb 25 2012
From Hieronymus Fischer, Sep 26 2012: (Start)
Let S(n) be a string of length n, then a(n) is the number of substrings of S(n) with a prime number of characters. Example 1: "abcd" is a string of length 4; there are a(4)=5 substrings with a prime number of characters (ab, bc, cd, abc and bcd). Example 2: "abcde" is a string of length 5; there are a(5)=8 substrings with a prime number of characters (ab, bc, cd, de, abc, bcd, cde and abcde).
Also: If n is represented in base 1 (this means 1=1_1, 2=11_1, 3=111_1, 4=1111_1, etc.), then a(n) is the number of substrings of n with a prime number of digits. Example: 7=1111111_1; the number of prime substrings of 7 (in base 1) is a(7)=15, since there are 15 substrings of prime length: 6 2-digit substrings, 5 3-digit substrings, 3 5-digit substrings and 1 7-digit substring.
(End)

Crossrefs

Programs

  • Haskell
    a046992 n = a046992_list !! (n-1)
    a046992_list = scanl1 (+) a000720_list
    -- Reinhard Zumkeller, Feb 25 2012
    
  • Mathematica
    f[n_] := (f[n - 1] + PrimePi[n]); f[1] = 0; Table[ f[n], {n, 1, 60}]
    Accumulate[PrimePi[Range[70]]] (* Harvey P. Dale, Feb 27 2013 *)
  • PARI
    a(n)=my(N=n+1,s); forprime(p=2,n, s+=N-p); s \\ Charles R Greathouse IV, Mar 03 2017
    
  • Python
    from sympy import primerange
    def A046992(n): return (n+1)*len(p:=list(primerange(n+1)))-sum(p) # Chai Wah Wu, Jan 01 2024

Formula

O.g.f.: A(x)/(1-x)^2 where A(x) = Sum_{p=prime} x^p is the o.g.f. of A010051 and A(x)/(1-x) is the o.g.f. of A000720. - Geoffrey Critzer, Dec 04 2011
From Hieronymus Fischer, Sep 26 2012: (Start)
a(n) = Sum_{p<=n, p is prime} (n - p +1).
a(n) = (n+1)*pi(n) - Sum_pi(n), where pi(n) = number of primes <= n and Sum_pi(n) = sum of primes <= n.
a(n) = (n+1)*A000720(n) - A034387(n).
(End)
a(n) ~ n^2 / (2 log n). - Charles R Greathouse IV, Mar 03 2017

Extensions

Corrected by Henry Bottomley