cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047073 a(n) = Sum_{j=0..n} A047072(j, n-j).

Original entry on oeis.org

1, 2, 4, 4, 8, 12, 24, 40, 80, 140, 280, 504, 1008, 1848, 3696, 6864, 13728, 25740, 51480, 97240, 194480, 369512, 739024, 1410864, 2821728, 5408312, 10816624, 20801200, 41602400, 80233200, 160466400, 310235040, 620470080, 1202160780
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select n+1 else 4*Binomial(n-2, Floor((n-2)/2)): n in [0..40]]; // G. C. Greubel, Oct 13 2022
    
  • Mathematica
    Table[If[n<2, n+1, 4*Binomial[n-2, Floor[(n-2)/2]]], {n,0,40}] (* G. C. Greubel, Oct 13 2022 *)
  • PARI
    a(n) = if(n<2, max(0,n+1), 4*binomial(n-2, n\2-1))
    
  • SageMath
    [4*binomial(n-2, ((n-2)//2)) + (n+1)*int(n<2) for n in range(41)] # G. C. Greubel, Oct 13 2022

Formula

a(n) = 2*A063886(n-1) + (n+1)*[n<2].
G.f.: 1 + 2*x*sqrt((1+2*x)/(1-2*x)). - Michael Somos
E.g.f.: 1 - x*BesselI(1, 2*x)*(2 + Pi*(1 + 2*x)*StruveL(0, 2*x)) + x*(1 + 2*x)*BesselI(0, 2*x)*(2 + Pi*StruveL(1, 2*x)). - Stefano Spezia, May 11 2024