cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047079 a(n) = Sum_{i=0..floor(n/2)} A047072(i, n-2*i).

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 7, 9, 14, 23, 33, 52, 85, 127, 202, 329, 503, 804, 1307, 2027, 3250, 5277, 8263, 13276, 21539, 33957, 54638, 88595, 140373, 226108, 366481, 582865, 939622, 1522487, 2428517, 3917412, 6345929, 10145769, 16374126
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    b:= func< n | n eq 0 select 1 else 2*Catalan(n-1) >;
    function A(n, k)
      if k eq n then return b(n);
      elif k gt n then return Binomial(n+k-1, n) - Binomial(n+k-1, n-1);
      else return Binomial(n+k-1, k) - Binomial(n+k-1, k-1);
      end if; return A;
    end function;
    [(&+[A(j, n-2*j): j in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, Oct 29 2022
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==n, 2*CatalanNumber[n-1] +2*Boole[n==0], If[k>n, Binomial[n+k-1,n] -Binomial[n+k-1,n-1], Binomial[n+k-1,k] -Binomial[n+k-1, k- 1]]];
    A047079[n_]:= Sum[T[j, n-2*j], {j,0,Floor[n/2]}] +Boole[n==0];
    Table[A047079[n], {n,0,50}] (* G. C. Greubel, Oct 29 2022 *)
  • SageMath
    def A047072(n, k): # array
        if (k==n): return 2*catalan_number(n-1) + 2*int(n==0)
        elif (k>n): return binomial(n+k-1, n) - binomial(n+k-1, n-1)
        else: return binomial(n+k-1, k) - binomial(n+k-1, k-1)
    def A047079(n): return sum( A047072(j, n-2*j) for j in range(((n+1)//2)+1) )
    [A047079(n) for n in range(51)] # G. C. Greubel, Oct 29 2022

Extensions

Name improved by Sean A. Irvine, May 11 2021