cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047084 a(n) = Sum_{i=0..n} A047080(i,n-i).

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 9, 14, 21, 33, 50, 77, 118, 181, 278, 426, 654, 1003, 1539, 2361, 3622, 5557, 8525, 13079, 20065, 30783, 47226, 72452, 111153, 170526, 261614, 401357, 615745, 944650, 1449242, 2223366, 3410994, 5233003, 8028252, 12316605, 18895615, 28988854
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    [(&+[A(n-2*j, j): j in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, Oct 31 2022
    
  • Mathematica
    A[n_, k_]:=Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] -
     Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
    A047084[n_]:= A047084[n]= Sum[A[2*k-n, n-k], {k,0,n}];
    Table[A047084[n], {n, 0, 50}] (* G. C. Greubel, Oct 31 2022 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    [sum(A(n-2*j,j) for j in range(1+(n//2))) for n in range(51)] # G. C. Greubel, Oct 31 2022

Formula

a(n) = Sum_{j=0..floor(n/2)} A(n-2*j, j), where A(n,k) = array of A048080(n,k). - G. C. Greubel, Oct 31 2022

Extensions

Entry revised by Sean A. Irvine, May 11 2021