cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A047080 Triangular array T read by rows: T(h,k)=number of paths from (0,0) to (k,h-k) using step-vectors (0,1), (1,0), (1,1) with no right angles between pairs of consecutive steps.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 3, 1, 1, 4, 5, 5, 4, 1, 1, 5, 8, 9, 8, 5, 1, 1, 6, 12, 15, 15, 12, 6, 1, 1, 7, 17, 24, 27, 24, 17, 7, 1, 1, 8, 23, 37, 46, 46, 37, 23, 8, 1, 1, 9, 30, 55, 75, 83, 75, 55, 30, 9, 1, 1, 10, 38, 79, 118, 143, 143, 118, 79, 38, 10, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) equals the number of reduced alignments between a string of length n and a string of length k. See Andrade et. al. - Peter Bala, Feb 04 2018

Examples

			E.g., row 3 consists of T(3,0)=1; T(3,1)=2; T(3,2)=2; T(3,3)=1.
Triangle begins:
  1;
  1,  1;
  1,  1,  1;
  1,  2,  2,  1;
  1,  3,  3,  3,  1;
  1,  4,  5,  5,  4,  1;
  1,  5,  8,  9,  8,  5,  1;
  1,  6, 12, 15, 15, 12,  6,  1;
		

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    A047080:= func< n,k | n eq 0 select 1 else A(n-k, k) >;
    [[A(n,k): k in [1..6]]: n in [1..6]];
    [A047080(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2022
    
  • Maple
    T := proc(n, k) option remember; if n < 0 or k > n then return 0 fi;
    if n < 3 then return 1 fi; if k < iquo(n,2) then return T(n, n-k) fi;
    T(n-1, k-1) + T(n-1, k) - T(n-4, k-2)  end:
    seq(seq(T(n,k), k=0..n), n=0..11); # Peter Luschny, Feb 11 2018
  • Mathematica
    T[n_, k_] := T[n, k] = Which[n<0 || k>n, 0, n<3, 1, kJean-François Alcover, Jul 30 2018 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    def A047080(n,k): return A(n-k, k)
    flatten([[A047080(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Oct 30 2022

Formula

T(h, k) = T(h-1, k-1) + T(h-1, k) - T(h-4, k-2);
Writing T(h, k) = F(h-k, k), generating function for F is (1-xy)/(1-x-y+x^2y^2).
From Peter Bala, Feb 04 2018: (Start)
T(n, k) = (Sum_{i = 0..A} (-1)^i*(n+k-3*i)!/(i!*(n-2*i)!*(k-2*i)!)) - (Sum_{i = 0..B} (-1)^i*(n+k-3*i-2)!/(i!*(n-2*i-1)!*(k-2*i-1)!)), where A = min{floor(n/2), floor(k/2)} and B = min{floor((n-1)/2), floor((k-1)/2)}.
T(2*n, n) = A171155(n). (End)
From G. C. Greubel, Oct 30 2022: (Start) (formulas for triangle T(n,k))
T(n, n-k) = T(n, k).
T(n, n) = A000012(n).
T(n, n-1) = A028310(n-1).
T(n, n-2) = A089071(n-1) = A022856(n+1).
T(2*n, n-1) = A047087(n).
T(2*n+1, n-1) = A047088(n).
Sum_{k=0..n} T(n, k) = (-1)^n*A078042(n) = A001590(n+3).
Sum_{k=0..n} (-1)^k*T(n, k) = A091337(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = A047084(n). (End)

Extensions

Sequence recomputed to correct terms from 23rd onward, and recurrence and generating function added by Michael L. Catalano-Johnson (mcj(AT)pa.wagner.com), Jan 14 2000

A047081 a(n) = Sum_{k=0..n} T(n, k), array T as in A047080.

Original entry on oeis.org

1, 2, 3, 6, 11, 20, 37, 68, 125, 230, 423, 778, 1431, 2632, 4841, 8904, 16377, 30122, 55403, 101902, 187427, 344732, 634061, 1166220, 2145013, 3945294, 7256527, 13346834, 24548655, 45152016, 83047505, 152748176, 280947697, 516743378, 950439251, 1748130326, 3215312955, 5913882532, 10877325813
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select n else Self(n-1) +Self(n-2) +Self(n-3): n in [1..60]]; // G. C. Greubel, Oct 31 2022
    
  • Mathematica
    LinearRecurrence[{1,1,1}, {1,2,3}, 61] (* G. C. Greubel, Oct 31 2022 *)
  • SageMath
    @CachedFunction
    def a(n): return (n+1) if (n<3) else a(n-1) +a(n-2) +a(n-3) # a = A047081
    [a(n) for n in (0..60)] # G. C. Greubel, Oct 31 2022

Formula

From G. C. Greubel, Oct 31 2022: (Start)
G.f.: (1 + x)/(1 - x - x^2 - x^3).
a(n) = A000073(n+1) + A000073(n+2). (End)
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(-3*r^2+5*r+2). - Fabian Pereyra, Nov 23 2024
a(n) = A001590(n+3). - R. J. Mathar, Mar 28 2025

Extensions

Data corrected by G. C. Greubel, Oct 31 2022

A047085 a(n) = T(2*n, n), array T as in A047080.

Original entry on oeis.org

1, 1, 3, 9, 27, 83, 259, 817, 2599, 8323, 26797, 86659, 281287, 915907, 2990383, 9786369, 32092959, 105435607, 346950321, 1143342603, 3772698725, 12463525229, 41218894577, 136451431723, 452116980643, 1499282161375, 4975631425581, 16524213199923, 54913514061867
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( Sqrt((1-x)/(1 -3*x-x^2-x^3)) )); // G. C. Greubel, Oct 30 2022
    
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-3*x-x^2-x^3)], {x, 0, 50}], x] (* G. C. Greubel, Oct 30 2022 *)
  • SageMath
    def A047085_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sqrt((1-x)/(1-3*x-x^2-x^3)) ).list()
    A047085_list(50) # G. C. Greubel, Oct 30 2022

Formula

From G. C. Greubel, Oct 30 2022: (Start)
a(n) = A171155(n).
G.f.: sqrt((1 - x)/(1 - 3*x - x^2 - x^3)). (End)

Extensions

Data corrected by Sean A. Irvine, May 11 2021

A047082 a(n) = Sum_{i=0..floor(n/2)} A047080(n,i).

Original entry on oeis.org

1, 1, 2, 3, 7, 10, 23, 34, 76, 115, 253, 389, 845, 1316, 2829, 4452, 9488, 15061, 31863, 50951, 107112, 172366, 360360, 583110, 1213150, 1972647, 4086217, 6673417, 13769519, 22576008, 46416937, 76374088, 156520328, 258371689, 527937429, 874065163, 1781131638
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    [(&+[A(n-j,j): j in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, Oct 31 2022
    
  • Mathematica
    A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
    A047082[n_]:= A047082[n]= Sum[A[n-k,k], {k,0,Floor[n/2]}];
    Table[A047082[n], {n, 0, 50}] (* G. C. Greubel, Oct 31 2022 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    [sum(A(n-j,j) for j in range(1+(n//2))) for n in range(51)] # G. C. Greubel, Oct 31 2022

Extensions

Data corrected by Sean A. Irvine, May 11 2021

A047083 a(n) = Sum_{i=0..floor((n+1)/2)} A047080(n,i).

Original entry on oeis.org

1, 2, 2, 5, 7, 15, 23, 49, 76, 161, 253, 532, 845, 1766, 2829, 5881, 9488, 19631, 31863, 65649, 107112, 219857, 360360, 737152, 1213150, 2473930, 4086217, 8309252, 13769519, 27927146, 46416937, 93915759, 156520328, 315982677, 527937429, 1063586803, 1781131638
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    [(&+[A(n-j,j): j in [0..Floor((n+1)/2)]]): n in [0..50]]; // G. C. Greubel, Oct 31 2022
    
  • Mathematica
    A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] -
     Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
    A047083[n_]:= A047083[n]= Sum[A[n-k,k], {k,0,Floor[(n+1)/2]}];
    Table[A047083[n], {n,0,50}] (* G. C. Greubel, Oct 31 2022 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    [sum(A(n-j,j) for j in range(1+((n+1)//2))) for n in range(51)] # G. C. Greubel, Oct 31 2022

Extensions

Data corrected by Sean A. Irvine, May 11 2021

A047086 a(n) = T(2*n+1, n), array T as in A047080.

Original entry on oeis.org

1, 2, 5, 15, 46, 143, 450, 1429, 4570, 14698, 47491, 154042, 501283, 1635835, 5351138, 17541671, 57610988, 189521640, 624389105, 2059824523, 6803433916, 22495796651, 74457478476, 246667937610, 817866796549, 2713874203112, 9011747680649, 29944572743724
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    [A(n+1,n): n in [0..50]]; // G. C. Greubel, Oct 30 2022
    
  • Mathematica
    A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j, 0, Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j, 0, Floor[(n+k-2)/3]}];
    T[n_, k_]:= A[n-k,k];
    Table[T[2*n+1,n], {n,0,50}] (* G. C. Greubel, Oct 30 2022 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    [A(n+1,n) for n in range(51)] # G. C. Greubel, Oct 30 2022

Formula

a(n+4) = ((16*n^3 + 100*n^2 + 188*n + 105)*a(n+3) - (8*n^3 + 36*n^2 + 46*n + 5)*a(n+2) + (4*n^2 + 16*n + 25)*a(n+1) - (n-1)*(2*n+5)^2*a(n))/((n+4)*(2*n+3)^2). - G. C. Greubel, Oct 30 2022

Extensions

Corrected and extended by Sean A. Irvine, May 11 2021

A047087 a(n) = A047080(2*n, n+1).

Original entry on oeis.org

1, 3, 8, 24, 75, 237, 755, 2421, 7804, 25264, 82081, 267487, 873970, 2862038, 9391137, 30869167, 101627704, 335049772, 1106003560, 3655124296, 12092095945, 40042017815, 132712302538, 440207294382, 1461259979347, 4853983051617, 16134233746913, 53660996850207
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    [A(n-1,n+1): n in [1..50]]; // G. C. Greubel, Oct 30 2022
    
  • Mathematica
    A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j, 0, Floor[(n+k- 2)/3]}];
    Table[A[n-1, n+1], {n, 50}] (* G. C. Greubel, Oct 30 2022 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    [A(n-1,n+1) for n in range(1,50)] # G. C. Greubel, Oct 30 2022

Formula

a(n+4) = ((4*n^5 + 61*n^4 + 374*n^3 + 1146*n^2 + 1743*n + 1046)*a(n+3) - (2*n^5 + 27*n^4 + 146*n^3 + 380*n^2 + 467*n + 220)*a(n+2) + (n+4)*(n^3 + 10*n^2 + 44*n + 53)*a(n+1) - (n-2)*(n+3)*(n+4)*(n^2 + 8*n + 18)*a(n))/((n+2)*(n+3)*(n+5)*(n^2 + 6*n + 11)). - G. C. Greubel, Oct 30 2022

Extensions

Corrected and extended by Sean A. Irvine, May 11 2021

A047088 a(n) = A047080(2*n+1, n+2).

Original entry on oeis.org

1, 4, 12, 37, 118, 380, 1229, 3989, 12987, 42394, 138709, 454768, 1493690, 4913969, 16189534, 53407853, 176397299, 583242159, 1930349545, 6394665589, 21201345460, 70346920007, 233581374587, 776105485336, 2580316142887, 8583746045611, 28570407158100
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    [A(n-1,n+2): n in [1..50]]; // G. C. Greubel, Oct 31 2022
    
  • Mathematica
    A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
    Table[A[n-1, n+2], {n, 50}] (* G. C. Greubel, Oct 31 2022 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    [A(n-1,n+2) for n in range(1,50)] # G. C. Greubel, Oct 31 2022

Formula

a(n+4) = ((16*n^5 + 324*n^4 + 2624*n^3 + 10509*n^2 + 20655*n + 15930)*a(n+3) - (8*n^5 + 148*n^4 + 1090*n^3 + 3953*n^2 + 7365*n + 5994)*a(n+2) + (4*n^4 + 84*n^3 + 701*n^2 + 2451*n + 2646)*a(n+1) - (n-3)*(n+6)*(2*n+7)*(2*n^2 + 23*n + 72)*a(n) )/((n+3)*(n+6)*(2*n+5)*(2*n^2 + 19*n + 51)). - G. C. Greubel, Oct 31 2022

Extensions

Corrected and extended by Sean A. Irvine, May 11 2021
Showing 1-8 of 8 results.