cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A047081 a(n) = Sum_{k=0..n} T(n, k), array T as in A047080.

Original entry on oeis.org

1, 2, 3, 6, 11, 20, 37, 68, 125, 230, 423, 778, 1431, 2632, 4841, 8904, 16377, 30122, 55403, 101902, 187427, 344732, 634061, 1166220, 2145013, 3945294, 7256527, 13346834, 24548655, 45152016, 83047505, 152748176, 280947697, 516743378, 950439251, 1748130326, 3215312955, 5913882532, 10877325813
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select n else Self(n-1) +Self(n-2) +Self(n-3): n in [1..60]]; // G. C. Greubel, Oct 31 2022
    
  • Mathematica
    LinearRecurrence[{1,1,1}, {1,2,3}, 61] (* G. C. Greubel, Oct 31 2022 *)
  • SageMath
    @CachedFunction
    def a(n): return (n+1) if (n<3) else a(n-1) +a(n-2) +a(n-3) # a = A047081
    [a(n) for n in (0..60)] # G. C. Greubel, Oct 31 2022

Formula

From G. C. Greubel, Oct 31 2022: (Start)
G.f.: (1 + x)/(1 - x - x^2 - x^3).
a(n) = A000073(n+1) + A000073(n+2). (End)
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(-3*r^2+5*r+2). - Fabian Pereyra, Nov 23 2024
a(n) = A001590(n+3). - R. J. Mathar, Mar 28 2025

Extensions

Data corrected by G. C. Greubel, Oct 31 2022

A047085 a(n) = T(2*n, n), array T as in A047080.

Original entry on oeis.org

1, 1, 3, 9, 27, 83, 259, 817, 2599, 8323, 26797, 86659, 281287, 915907, 2990383, 9786369, 32092959, 105435607, 346950321, 1143342603, 3772698725, 12463525229, 41218894577, 136451431723, 452116980643, 1499282161375, 4975631425581, 16524213199923, 54913514061867
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( Sqrt((1-x)/(1 -3*x-x^2-x^3)) )); // G. C. Greubel, Oct 30 2022
    
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-3*x-x^2-x^3)], {x, 0, 50}], x] (* G. C. Greubel, Oct 30 2022 *)
  • SageMath
    def A047085_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sqrt((1-x)/(1-3*x-x^2-x^3)) ).list()
    A047085_list(50) # G. C. Greubel, Oct 30 2022

Formula

From G. C. Greubel, Oct 30 2022: (Start)
a(n) = A171155(n).
G.f.: sqrt((1 - x)/(1 - 3*x - x^2 - x^3)). (End)

Extensions

Data corrected by Sean A. Irvine, May 11 2021

A047082 a(n) = Sum_{i=0..floor(n/2)} A047080(n,i).

Original entry on oeis.org

1, 1, 2, 3, 7, 10, 23, 34, 76, 115, 253, 389, 845, 1316, 2829, 4452, 9488, 15061, 31863, 50951, 107112, 172366, 360360, 583110, 1213150, 1972647, 4086217, 6673417, 13769519, 22576008, 46416937, 76374088, 156520328, 258371689, 527937429, 874065163, 1781131638
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    [(&+[A(n-j,j): j in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, Oct 31 2022
    
  • Mathematica
    A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
    A047082[n_]:= A047082[n]= Sum[A[n-k,k], {k,0,Floor[n/2]}];
    Table[A047082[n], {n, 0, 50}] (* G. C. Greubel, Oct 31 2022 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    [sum(A(n-j,j) for j in range(1+(n//2))) for n in range(51)] # G. C. Greubel, Oct 31 2022

Extensions

Data corrected by Sean A. Irvine, May 11 2021

A047083 a(n) = Sum_{i=0..floor((n+1)/2)} A047080(n,i).

Original entry on oeis.org

1, 2, 2, 5, 7, 15, 23, 49, 76, 161, 253, 532, 845, 1766, 2829, 5881, 9488, 19631, 31863, 65649, 107112, 219857, 360360, 737152, 1213150, 2473930, 4086217, 8309252, 13769519, 27927146, 46416937, 93915759, 156520328, 315982677, 527937429, 1063586803, 1781131638
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    [(&+[A(n-j,j): j in [0..Floor((n+1)/2)]]): n in [0..50]]; // G. C. Greubel, Oct 31 2022
    
  • Mathematica
    A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] -
     Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
    A047083[n_]:= A047083[n]= Sum[A[n-k,k], {k,0,Floor[(n+1)/2]}];
    Table[A047083[n], {n,0,50}] (* G. C. Greubel, Oct 31 2022 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    [sum(A(n-j,j) for j in range(1+((n+1)//2))) for n in range(51)] # G. C. Greubel, Oct 31 2022

Extensions

Data corrected by Sean A. Irvine, May 11 2021

A047084 a(n) = Sum_{i=0..n} A047080(i,n-i).

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 9, 14, 21, 33, 50, 77, 118, 181, 278, 426, 654, 1003, 1539, 2361, 3622, 5557, 8525, 13079, 20065, 30783, 47226, 72452, 111153, 170526, 261614, 401357, 615745, 944650, 1449242, 2223366, 3410994, 5233003, 8028252, 12316605, 18895615, 28988854
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    [(&+[A(n-2*j, j): j in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, Oct 31 2022
    
  • Mathematica
    A[n_, k_]:=Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] -
     Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
    A047084[n_]:= A047084[n]= Sum[A[2*k-n, n-k], {k,0,n}];
    Table[A047084[n], {n, 0, 50}] (* G. C. Greubel, Oct 31 2022 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    [sum(A(n-2*j,j) for j in range(1+(n//2))) for n in range(51)] # G. C. Greubel, Oct 31 2022

Formula

a(n) = Sum_{j=0..floor(n/2)} A(n-2*j, j), where A(n,k) = array of A048080(n,k). - G. C. Greubel, Oct 31 2022

Extensions

Entry revised by Sean A. Irvine, May 11 2021

A047086 a(n) = T(2*n+1, n), array T as in A047080.

Original entry on oeis.org

1, 2, 5, 15, 46, 143, 450, 1429, 4570, 14698, 47491, 154042, 501283, 1635835, 5351138, 17541671, 57610988, 189521640, 624389105, 2059824523, 6803433916, 22495796651, 74457478476, 246667937610, 817866796549, 2713874203112, 9011747680649, 29944572743724
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    [A(n+1,n): n in [0..50]]; // G. C. Greubel, Oct 30 2022
    
  • Mathematica
    A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j, 0, Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j, 0, Floor[(n+k-2)/3]}];
    T[n_, k_]:= A[n-k,k];
    Table[T[2*n+1,n], {n,0,50}] (* G. C. Greubel, Oct 30 2022 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    [A(n+1,n) for n in range(51)] # G. C. Greubel, Oct 30 2022

Formula

a(n+4) = ((16*n^3 + 100*n^2 + 188*n + 105)*a(n+3) - (8*n^3 + 36*n^2 + 46*n + 5)*a(n+2) + (4*n^2 + 16*n + 25)*a(n+1) - (n-1)*(2*n+5)^2*a(n))/((n+4)*(2*n+3)^2). - G. C. Greubel, Oct 30 2022

Extensions

Corrected and extended by Sean A. Irvine, May 11 2021

A047087 a(n) = A047080(2*n, n+1).

Original entry on oeis.org

1, 3, 8, 24, 75, 237, 755, 2421, 7804, 25264, 82081, 267487, 873970, 2862038, 9391137, 30869167, 101627704, 335049772, 1106003560, 3655124296, 12092095945, 40042017815, 132712302538, 440207294382, 1461259979347, 4853983051617, 16134233746913, 53660996850207
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    [A(n-1,n+1): n in [1..50]]; // G. C. Greubel, Oct 30 2022
    
  • Mathematica
    A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j, 0, Floor[(n+k- 2)/3]}];
    Table[A[n-1, n+1], {n, 50}] (* G. C. Greubel, Oct 30 2022 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    [A(n-1,n+1) for n in range(1,50)] # G. C. Greubel, Oct 30 2022

Formula

a(n+4) = ((4*n^5 + 61*n^4 + 374*n^3 + 1146*n^2 + 1743*n + 1046)*a(n+3) - (2*n^5 + 27*n^4 + 146*n^3 + 380*n^2 + 467*n + 220)*a(n+2) + (n+4)*(n^3 + 10*n^2 + 44*n + 53)*a(n+1) - (n-2)*(n+3)*(n+4)*(n^2 + 8*n + 18)*a(n))/((n+2)*(n+3)*(n+5)*(n^2 + 6*n + 11)). - G. C. Greubel, Oct 30 2022

Extensions

Corrected and extended by Sean A. Irvine, May 11 2021

A047088 a(n) = A047080(2*n+1, n+2).

Original entry on oeis.org

1, 4, 12, 37, 118, 380, 1229, 3989, 12987, 42394, 138709, 454768, 1493690, 4913969, 16189534, 53407853, 176397299, 583242159, 1930349545, 6394665589, 21201345460, 70346920007, 233581374587, 776105485336, 2580316142887, 8583746045611, 28570407158100
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    F:=Factorial;
    p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
    q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
    A:= func< n,k | p(n,k) - q(n,k) >;
    [A(n-1,n+2): n in [1..50]]; // G. C. Greubel, Oct 31 2022
    
  • Mathematica
    A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
    Table[A[n-1, n+2], {n, 50}] (* G. C. Greubel, Oct 31 2022 *)
  • SageMath
    f=factorial
    def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
    def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
    def A(n,k): return p(n,k) - q(n,k)
    [A(n-1,n+2) for n in range(1,50)] # G. C. Greubel, Oct 31 2022

Formula

a(n+4) = ((16*n^5 + 324*n^4 + 2624*n^3 + 10509*n^2 + 20655*n + 15930)*a(n+3) - (8*n^5 + 148*n^4 + 1090*n^3 + 3953*n^2 + 7365*n + 5994)*a(n+2) + (4*n^4 + 84*n^3 + 701*n^2 + 2451*n + 2646)*a(n+1) - (n-3)*(n+6)*(2*n+7)*(2*n^2 + 23*n + 72)*a(n) )/((n+3)*(n+6)*(2*n+5)*(2*n^2 + 19*n + 51)). - G. C. Greubel, Oct 31 2022

Extensions

Corrected and extended by Sean A. Irvine, May 11 2021

A180091 a(m,n) is the number of ways to split two strings of length m and n, respectively, into the same number of nonempty parts such that at least one of the corresponding parts has length 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 5, 9, 1, 4, 8, 15, 27, 1, 5, 12, 24, 46, 83, 1, 6, 17, 37, 75, 143, 259, 1, 7, 23, 55, 118, 237, 450, 817, 1, 8, 30, 79, 180, 380, 755, 1429, 2599, 1, 9, 38, 110, 267, 592, 1229, 2421, 4570, 8323
Offset: 1

Views

Author

Steffen Eger, Jan 14 2011

Keywords

Comments

a(m,n) is also the number alignments (between two strings) that satisfy weak monotonicity, completeness, and disjointness.
a(m,n) is also the number of monotone lattice paths from (0,0) to (m,n) with steps in {(1,1),(1,2),(1,3),(1,4),...,(2,1),(3,1),(4,1),...}. - Steffen Eger, Sep 25 2012
From Julien Rouyer, Jun 02 2023: (Start)
a(m-1,n-1) is also the number of strictly increasing functions defined on a part of the m-set {1,...,m} that take values in the n-set {1,...,n} and that can't be extended to a greater part of the m-set to give another strictly increasing function (values for m < n can be obtained by symmetry).
a(m-1,n-1) is also the number of solutions to the problem consisting of connecting, with noncrossing edges, some of m points aligned on a straight line to some of n other points aligned on a parallel straight line (each point is connected at most with one other point), in such a way that no additional noncrossing connection can be added.
A direct combinatorial calculation is possible, but time-consuming if m and n are large. (End)
From Thierry Marchant, Oct 30 2024: (Start)
a(m,n) is also the number of maximal antichains in the product of two chains of length m and n.
a(m,n) is also the number of strict chains in the product of two chains of length m and n (a strict chain P in a product of two chains is a chain such that x,y in P implies x_1 different from y_1 and x_2 different from y_2).
a(m,n) is also the number of walks from (0,0) to (m,n) where unit horizontal (+1,0), vertical (0,+1), and diagonal (+1,+1) steps are permitted but a horizontal step cannot be followed by a vertical step, nor vice versa. (End)

Examples

			For m=4, n=3, the 5 possibilities are:
a) X XXX   b) XXX X  c) X XX X  d) XX X X   e) X X XX
   YY Y        Y YY     Y  Y Y     Y  Y Y      Y Y Y
The triangle a(m,n) starts in row m=1 with columns 1 <= n <= m as:
  1;
  1,  1;
  1,  2,  3;
  1,  3,  5,   9;
  1,  4,  8,  15,  27;
  1,  5, 12,  24,  46,   83;
  1,  6, 17,  37,  75,  143,  259;
  1,  7, 23,  55, 118,  237,  450,  817;
  1,  8, 30,  79, 180,  380,  755, 1429,  2599;
  1,  9, 38, 110, 267,  592, 1229, 2421,  4570,  8323;
  1, 10, 47, 149, 386,  899, 1948, 3989,  7804, 14698, 26797;
  1, 11, 57, 197, 545, 1334, 3015, 6412, 12987, 25264, 47491, 86659;
From _Julien Rouyer_, Jun 02 2023: (Start)
There are a(5)=T(3,2)=5 strictly increasing functions defined on a part of {1,2,3} that take values in {1,2} and can't be extended keeping the same properties. The 5 functions are defined by
    f(1)=1, f(2)=2;
    g(1)=1, g(2)=3;
    h(1)=2, h(2)=3;
    i(1)=3;
    j(2)=1. (End)
		

Crossrefs

Cf. A089071 (third column), A108626 (sums of diagonals).
Main diagonal gives A171155.
Cf. A047080.

Programs

  • Maple
    A180091 := proc(m,n) a := binomial(m-1,n-1); for k from 2 to n-1 do for l from 1 to k-1 do if k-l-1 >= 0 and k-l-1 <= n-k-1 and l-1 >=0 and l-1 <= m+l-k-1 then a := a+ binomial(k,l)*binomial(n-k-1,k-l-1)*binomial(m+l-k-1,l-1); end if; end do: end do: a; end proc: # R. J. Mathar, Feb 01 2011
  • Python
    # The following program gives T(m,n)=a(m+1,n+1) for any m >= 0 and n >= 0:
    def T(m,n):
        if n == 0:
            res = 1
        elif n == 1:
            res = max(m,n)
        elif m < n:
            res = T(n,m)
        else:
            res = 0
            for i in range(1,m+1):
                res += T(m-i,n-1)
            for j in range(2,n+1):
                res += T(m-1,n-j)
        return res # Julien Rouyer, Jun 02 2023

Formula

For m >= n: a(m,n) = C(m-1,n-1) + Sum_{k=2..n-1} Sum_{i=1..k-1} C(k,i)*C(n-k-1,k-i-1)*C(m+i-k-1,i-1).
Symmetrically extended to m <= n by a(m,n) = a(n,m).
a(n,n) = A171155(n-1).
a(m,n) = Sum_{i=1..m} a(m-i,n-1) + Sum_{j=2..n} a(m-1,n-j). - Julien Rouyer, Jun 02 2023
Showing 1-9 of 9 results.