A047081
a(n) = Sum_{k=0..n} T(n, k), array T as in A047080.
Original entry on oeis.org
1, 2, 3, 6, 11, 20, 37, 68, 125, 230, 423, 778, 1431, 2632, 4841, 8904, 16377, 30122, 55403, 101902, 187427, 344732, 634061, 1166220, 2145013, 3945294, 7256527, 13346834, 24548655, 45152016, 83047505, 152748176, 280947697, 516743378, 950439251, 1748130326, 3215312955, 5913882532, 10877325813
Offset: 0
-
[n le 3 select n else Self(n-1) +Self(n-2) +Self(n-3): n in [1..60]]; // G. C. Greubel, Oct 31 2022
-
LinearRecurrence[{1,1,1}, {1,2,3}, 61] (* G. C. Greubel, Oct 31 2022 *)
-
@CachedFunction
def a(n): return (n+1) if (n<3) else a(n-1) +a(n-2) +a(n-3) # a = A047081
[a(n) for n in (0..60)] # G. C. Greubel, Oct 31 2022
A047085
a(n) = T(2*n, n), array T as in A047080.
Original entry on oeis.org
1, 1, 3, 9, 27, 83, 259, 817, 2599, 8323, 26797, 86659, 281287, 915907, 2990383, 9786369, 32092959, 105435607, 346950321, 1143342603, 3772698725, 12463525229, 41218894577, 136451431723, 452116980643, 1499282161375, 4975631425581, 16524213199923, 54913514061867
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( Sqrt((1-x)/(1 -3*x-x^2-x^3)) )); // G. C. Greubel, Oct 30 2022
-
CoefficientList[Series[Sqrt[(1-x)/(1-3*x-x^2-x^3)], {x, 0, 50}], x] (* G. C. Greubel, Oct 30 2022 *)
-
def A047085_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( sqrt((1-x)/(1-3*x-x^2-x^3)) ).list()
A047085_list(50) # G. C. Greubel, Oct 30 2022
A047082
a(n) = Sum_{i=0..floor(n/2)} A047080(n,i).
Original entry on oeis.org
1, 1, 2, 3, 7, 10, 23, 34, 76, 115, 253, 389, 845, 1316, 2829, 4452, 9488, 15061, 31863, 50951, 107112, 172366, 360360, 583110, 1213150, 1972647, 4086217, 6673417, 13769519, 22576008, 46416937, 76374088, 156520328, 258371689, 527937429, 874065163, 1781131638
Offset: 0
-
F:=Factorial;
p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n,k | p(n,k) - q(n,k) >;
[(&+[A(n-j,j): j in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, Oct 31 2022
-
A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
A047082[n_]:= A047082[n]= Sum[A[n-k,k], {k,0,Floor[n/2]}];
Table[A047082[n], {n, 0, 50}] (* G. C. Greubel, Oct 31 2022 *)
-
f=factorial
def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n,k): return p(n,k) - q(n,k)
[sum(A(n-j,j) for j in range(1+(n//2))) for n in range(51)] # G. C. Greubel, Oct 31 2022
A047083
a(n) = Sum_{i=0..floor((n+1)/2)} A047080(n,i).
Original entry on oeis.org
1, 2, 2, 5, 7, 15, 23, 49, 76, 161, 253, 532, 845, 1766, 2829, 5881, 9488, 19631, 31863, 65649, 107112, 219857, 360360, 737152, 1213150, 2473930, 4086217, 8309252, 13769519, 27927146, 46416937, 93915759, 156520328, 315982677, 527937429, 1063586803, 1781131638
Offset: 0
-
F:=Factorial;
p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n,k | p(n,k) - q(n,k) >;
[(&+[A(n-j,j): j in [0..Floor((n+1)/2)]]): n in [0..50]]; // G. C. Greubel, Oct 31 2022
-
A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] -
Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
A047083[n_]:= A047083[n]= Sum[A[n-k,k], {k,0,Floor[(n+1)/2]}];
Table[A047083[n], {n,0,50}] (* G. C. Greubel, Oct 31 2022 *)
-
f=factorial
def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n,k): return p(n,k) - q(n,k)
[sum(A(n-j,j) for j in range(1+((n+1)//2))) for n in range(51)] # G. C. Greubel, Oct 31 2022
A047084
a(n) = Sum_{i=0..n} A047080(i,n-i).
Original entry on oeis.org
1, 1, 2, 2, 4, 6, 9, 14, 21, 33, 50, 77, 118, 181, 278, 426, 654, 1003, 1539, 2361, 3622, 5557, 8525, 13079, 20065, 30783, 47226, 72452, 111153, 170526, 261614, 401357, 615745, 944650, 1449242, 2223366, 3410994, 5233003, 8028252, 12316605, 18895615, 28988854
Offset: 0
-
F:=Factorial;
p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n,k | p(n,k) - q(n,k) >;
[(&+[A(n-2*j, j): j in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, Oct 31 2022
-
A[n_, k_]:=Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] -
Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
A047084[n_]:= A047084[n]= Sum[A[2*k-n, n-k], {k,0,n}];
Table[A047084[n], {n, 0, 50}] (* G. C. Greubel, Oct 31 2022 *)
-
f=factorial
def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n,k): return p(n,k) - q(n,k)
[sum(A(n-2*j,j) for j in range(1+(n//2))) for n in range(51)] # G. C. Greubel, Oct 31 2022
A047086
a(n) = T(2*n+1, n), array T as in A047080.
Original entry on oeis.org
1, 2, 5, 15, 46, 143, 450, 1429, 4570, 14698, 47491, 154042, 501283, 1635835, 5351138, 17541671, 57610988, 189521640, 624389105, 2059824523, 6803433916, 22495796651, 74457478476, 246667937610, 817866796549, 2713874203112, 9011747680649, 29944572743724
Offset: 0
-
F:=Factorial;
p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n,k | p(n,k) - q(n,k) >;
[A(n+1,n): n in [0..50]]; // G. C. Greubel, Oct 30 2022
-
A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j, 0, Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j, 0, Floor[(n+k-2)/3]}];
T[n_, k_]:= A[n-k,k];
Table[T[2*n+1,n], {n,0,50}] (* G. C. Greubel, Oct 30 2022 *)
-
f=factorial
def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n,k): return p(n,k) - q(n,k)
[A(n+1,n) for n in range(51)] # G. C. Greubel, Oct 30 2022
Original entry on oeis.org
1, 3, 8, 24, 75, 237, 755, 2421, 7804, 25264, 82081, 267487, 873970, 2862038, 9391137, 30869167, 101627704, 335049772, 1106003560, 3655124296, 12092095945, 40042017815, 132712302538, 440207294382, 1461259979347, 4853983051617, 16134233746913, 53660996850207
Offset: 1
-
F:=Factorial;
p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n,k | p(n,k) - q(n,k) >;
[A(n-1,n+1): n in [1..50]]; // G. C. Greubel, Oct 30 2022
-
A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j, 0, Floor[(n+k- 2)/3]}];
Table[A[n-1, n+1], {n, 50}] (* G. C. Greubel, Oct 30 2022 *)
-
f=factorial
def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n,k): return p(n,k) - q(n,k)
[A(n-1,n+1) for n in range(1,50)] # G. C. Greubel, Oct 30 2022
Original entry on oeis.org
1, 4, 12, 37, 118, 380, 1229, 3989, 12987, 42394, 138709, 454768, 1493690, 4913969, 16189534, 53407853, 176397299, 583242159, 1930349545, 6394665589, 21201345460, 70346920007, 233581374587, 776105485336, 2580316142887, 8583746045611, 28570407158100
Offset: 1
-
F:=Factorial;
p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n,k | p(n,k) - q(n,k) >;
[A(n-1,n+2): n in [1..50]]; // G. C. Greubel, Oct 31 2022
-
A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
Table[A[n-1, n+2], {n, 50}] (* G. C. Greubel, Oct 31 2022 *)
-
f=factorial
def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n,k): return p(n,k) - q(n,k)
[A(n-1,n+2) for n in range(1,50)] # G. C. Greubel, Oct 31 2022
A180091
a(m,n) is the number of ways to split two strings of length m and n, respectively, into the same number of nonempty parts such that at least one of the corresponding parts has length 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 5, 9, 1, 4, 8, 15, 27, 1, 5, 12, 24, 46, 83, 1, 6, 17, 37, 75, 143, 259, 1, 7, 23, 55, 118, 237, 450, 817, 1, 8, 30, 79, 180, 380, 755, 1429, 2599, 1, 9, 38, 110, 267, 592, 1229, 2421, 4570, 8323
Offset: 1
For m=4, n=3, the 5 possibilities are:
a) X XXX b) XXX X c) X XX X d) XX X X e) X X XX
YY Y Y YY Y Y Y Y Y Y Y Y Y
The triangle a(m,n) starts in row m=1 with columns 1 <= n <= m as:
1;
1, 1;
1, 2, 3;
1, 3, 5, 9;
1, 4, 8, 15, 27;
1, 5, 12, 24, 46, 83;
1, 6, 17, 37, 75, 143, 259;
1, 7, 23, 55, 118, 237, 450, 817;
1, 8, 30, 79, 180, 380, 755, 1429, 2599;
1, 9, 38, 110, 267, 592, 1229, 2421, 4570, 8323;
1, 10, 47, 149, 386, 899, 1948, 3989, 7804, 14698, 26797;
1, 11, 57, 197, 545, 1334, 3015, 6412, 12987, 25264, 47491, 86659;
From _Julien Rouyer_, Jun 02 2023: (Start)
There are a(5)=T(3,2)=5 strictly increasing functions defined on a part of {1,2,3} that take values in {1,2} and can't be extended keeping the same properties. The 5 functions are defined by
f(1)=1, f(2)=2;
g(1)=1, g(2)=3;
h(1)=2, h(2)=3;
i(1)=3;
j(2)=1. (End)
- D. Bouyssou, T. Marchant, and M. Pirlot, About maximal antichains in a product of two chains:A catch-all note, arXiv:2410.16243 [math.CO], 2024. See pp. 1, 3, 16-18.
- M. A. Covington, The Number of Distinct Alignments of Two Strings, Journal of Quantitative Linguistics, Vol. 11 (2004), Issue 3, pp. 173-182.
- S. Eger, Derivation of sequence [broken link]
-
A180091 := proc(m,n) a := binomial(m-1,n-1); for k from 2 to n-1 do for l from 1 to k-1 do if k-l-1 >= 0 and k-l-1 <= n-k-1 and l-1 >=0 and l-1 <= m+l-k-1 then a := a+ binomial(k,l)*binomial(n-k-1,k-l-1)*binomial(m+l-k-1,l-1); end if; end do: end do: a; end proc: # R. J. Mathar, Feb 01 2011
-
# The following program gives T(m,n)=a(m+1,n+1) for any m >= 0 and n >= 0:
def T(m,n):
if n == 0:
res = 1
elif n == 1:
res = max(m,n)
elif m < n:
res = T(n,m)
else:
res = 0
for i in range(1,m+1):
res += T(m-i,n-1)
for j in range(2,n+1):
res += T(m-1,n-j)
return res # Julien Rouyer, Jun 02 2023
Showing 1-9 of 9 results.
Comments