A047080
Triangular array T read by rows: T(h,k)=number of paths from (0,0) to (k,h-k) using step-vectors (0,1), (1,0), (1,1) with no right angles between pairs of consecutive steps.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 3, 1, 1, 4, 5, 5, 4, 1, 1, 5, 8, 9, 8, 5, 1, 1, 6, 12, 15, 15, 12, 6, 1, 1, 7, 17, 24, 27, 24, 17, 7, 1, 1, 8, 23, 37, 46, 46, 37, 23, 8, 1, 1, 9, 30, 55, 75, 83, 75, 55, 30, 9, 1, 1, 10, 38, 79, 118, 143, 143, 118, 79, 38, 10, 1
Offset: 0
E.g., row 3 consists of T(3,0)=1; T(3,1)=2; T(3,2)=2; T(3,3)=1.
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 3, 3, 1;
1, 4, 5, 5, 4, 1;
1, 5, 8, 9, 8, 5, 1;
1, 6, 12, 15, 15, 12, 6, 1;
-
F:=Factorial;
p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n,k | p(n,k) - q(n,k) >;
A047080:= func< n,k | n eq 0 select 1 else A(n-k, k) >;
[[A(n,k): k in [1..6]]: n in [1..6]];
[A047080(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2022
-
T := proc(n, k) option remember; if n < 0 or k > n then return 0 fi;
if n < 3 then return 1 fi; if k < iquo(n,2) then return T(n, n-k) fi;
T(n-1, k-1) + T(n-1, k) - T(n-4, k-2) end:
seq(seq(T(n,k), k=0..n), n=0..11); # Peter Luschny, Feb 11 2018
-
T[n_, k_] := T[n, k] = Which[n<0 || k>n, 0, n<3, 1, kJean-François Alcover, Jul 30 2018 *)
-
f=factorial
def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n,k): return p(n,k) - q(n,k)
def A047080(n,k): return A(n-k, k)
flatten([[A047080(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Oct 30 2022
Sequence recomputed to correct terms from 23rd onward, and recurrence and generating function added by Michael L. Catalano-Johnson (mcj(AT)pa.wagner.com), Jan 14 2000
A047085
a(n) = T(2*n, n), array T as in A047080.
Original entry on oeis.org
1, 1, 3, 9, 27, 83, 259, 817, 2599, 8323, 26797, 86659, 281287, 915907, 2990383, 9786369, 32092959, 105435607, 346950321, 1143342603, 3772698725, 12463525229, 41218894577, 136451431723, 452116980643, 1499282161375, 4975631425581, 16524213199923, 54913514061867
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( Sqrt((1-x)/(1 -3*x-x^2-x^3)) )); // G. C. Greubel, Oct 30 2022
-
CoefficientList[Series[Sqrt[(1-x)/(1-3*x-x^2-x^3)], {x, 0, 50}], x] (* G. C. Greubel, Oct 30 2022 *)
-
def A047085_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( sqrt((1-x)/(1-3*x-x^2-x^3)) ).list()
A047085_list(50) # G. C. Greubel, Oct 30 2022
A047082
a(n) = Sum_{i=0..floor(n/2)} A047080(n,i).
Original entry on oeis.org
1, 1, 2, 3, 7, 10, 23, 34, 76, 115, 253, 389, 845, 1316, 2829, 4452, 9488, 15061, 31863, 50951, 107112, 172366, 360360, 583110, 1213150, 1972647, 4086217, 6673417, 13769519, 22576008, 46416937, 76374088, 156520328, 258371689, 527937429, 874065163, 1781131638
Offset: 0
-
F:=Factorial;
p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n,k | p(n,k) - q(n,k) >;
[(&+[A(n-j,j): j in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, Oct 31 2022
-
A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
A047082[n_]:= A047082[n]= Sum[A[n-k,k], {k,0,Floor[n/2]}];
Table[A047082[n], {n, 0, 50}] (* G. C. Greubel, Oct 31 2022 *)
-
f=factorial
def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n,k): return p(n,k) - q(n,k)
[sum(A(n-j,j) for j in range(1+(n//2))) for n in range(51)] # G. C. Greubel, Oct 31 2022
A047083
a(n) = Sum_{i=0..floor((n+1)/2)} A047080(n,i).
Original entry on oeis.org
1, 2, 2, 5, 7, 15, 23, 49, 76, 161, 253, 532, 845, 1766, 2829, 5881, 9488, 19631, 31863, 65649, 107112, 219857, 360360, 737152, 1213150, 2473930, 4086217, 8309252, 13769519, 27927146, 46416937, 93915759, 156520328, 315982677, 527937429, 1063586803, 1781131638
Offset: 0
-
F:=Factorial;
p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n,k | p(n,k) - q(n,k) >;
[(&+[A(n-j,j): j in [0..Floor((n+1)/2)]]): n in [0..50]]; // G. C. Greubel, Oct 31 2022
-
A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] -
Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
A047083[n_]:= A047083[n]= Sum[A[n-k,k], {k,0,Floor[(n+1)/2]}];
Table[A047083[n], {n,0,50}] (* G. C. Greubel, Oct 31 2022 *)
-
f=factorial
def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n,k): return p(n,k) - q(n,k)
[sum(A(n-j,j) for j in range(1+((n+1)//2))) for n in range(51)] # G. C. Greubel, Oct 31 2022
A047084
a(n) = Sum_{i=0..n} A047080(i,n-i).
Original entry on oeis.org
1, 1, 2, 2, 4, 6, 9, 14, 21, 33, 50, 77, 118, 181, 278, 426, 654, 1003, 1539, 2361, 3622, 5557, 8525, 13079, 20065, 30783, 47226, 72452, 111153, 170526, 261614, 401357, 615745, 944650, 1449242, 2223366, 3410994, 5233003, 8028252, 12316605, 18895615, 28988854
Offset: 0
-
F:=Factorial;
p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n,k | p(n,k) - q(n,k) >;
[(&+[A(n-2*j, j): j in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, Oct 31 2022
-
A[n_, k_]:=Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] -
Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
A047084[n_]:= A047084[n]= Sum[A[2*k-n, n-k], {k,0,n}];
Table[A047084[n], {n, 0, 50}] (* G. C. Greubel, Oct 31 2022 *)
-
f=factorial
def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n,k): return p(n,k) - q(n,k)
[sum(A(n-2*j,j) for j in range(1+(n//2))) for n in range(51)] # G. C. Greubel, Oct 31 2022
A047086
a(n) = T(2*n+1, n), array T as in A047080.
Original entry on oeis.org
1, 2, 5, 15, 46, 143, 450, 1429, 4570, 14698, 47491, 154042, 501283, 1635835, 5351138, 17541671, 57610988, 189521640, 624389105, 2059824523, 6803433916, 22495796651, 74457478476, 246667937610, 817866796549, 2713874203112, 9011747680649, 29944572743724
Offset: 0
-
F:=Factorial;
p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n,k | p(n,k) - q(n,k) >;
[A(n+1,n): n in [0..50]]; // G. C. Greubel, Oct 30 2022
-
A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j, 0, Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j, 0, Floor[(n+k-2)/3]}];
T[n_, k_]:= A[n-k,k];
Table[T[2*n+1,n], {n,0,50}] (* G. C. Greubel, Oct 30 2022 *)
-
f=factorial
def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n,k): return p(n,k) - q(n,k)
[A(n+1,n) for n in range(51)] # G. C. Greubel, Oct 30 2022
Original entry on oeis.org
1, 3, 8, 24, 75, 237, 755, 2421, 7804, 25264, 82081, 267487, 873970, 2862038, 9391137, 30869167, 101627704, 335049772, 1106003560, 3655124296, 12092095945, 40042017815, 132712302538, 440207294382, 1461259979347, 4853983051617, 16134233746913, 53660996850207
Offset: 1
-
F:=Factorial;
p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n,k | p(n,k) - q(n,k) >;
[A(n-1,n+1): n in [1..50]]; // G. C. Greubel, Oct 30 2022
-
A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j, 0, Floor[(n+k- 2)/3]}];
Table[A[n-1, n+1], {n, 50}] (* G. C. Greubel, Oct 30 2022 *)
-
f=factorial
def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n,k): return p(n,k) - q(n,k)
[A(n-1,n+1) for n in range(1,50)] # G. C. Greubel, Oct 30 2022
Original entry on oeis.org
1, 4, 12, 37, 118, 380, 1229, 3989, 12987, 42394, 138709, 454768, 1493690, 4913969, 16189534, 53407853, 176397299, 583242159, 1930349545, 6394665589, 21201345460, 70346920007, 233581374587, 776105485336, 2580316142887, 8583746045611, 28570407158100
Offset: 1
-
F:=Factorial;
p:= func< n,k | (&+[ (-1)^j*F(n+k-3*j)/(F(j)*F(n-2*j)*F(k-2*j)): j in [0..Min(Floor(n/2), Floor(k/2))]]) >;
q:= func< n,k | n eq 0 or k eq 0 select 0 else (&+[ (-1)^j*F(n+k-3*j-2)/(F(j)*F(n-2*j-1)*F(k-2*j-1)) : j in [0..Min(Floor((n-1)/2), Floor((k-1)/2))]]) >;
A:= func< n,k | p(n,k) - q(n,k) >;
[A(n-1,n+2): n in [1..50]]; // G. C. Greubel, Oct 31 2022
-
A[n_, k_]:= Sum[(-1)^j*(n+k-3*j)!/(j!*(n-2*j)!*(k-2*j)!), {j,0,Floor[(n+k)/3]}] - Sum[(-1)^j*(n+k-3*j-2)!/(j!*(n-2*j-1)!*(k-2*j-1)!), {j,0,Floor[(n+k-2)/3]}];
Table[A[n-1, n+2], {n, 50}] (* G. C. Greubel, Oct 31 2022 *)
-
f=factorial
def p(n,k): return sum( (-1)^j*f(n+k-3*j)/(f(j)*f(n-2*j)*f(k-2*j)) for j in range(1+min((n//2), (k//2))) )
def q(n,k): return sum( (-1)^j*f(n+k-3*j-2)/(f(j)*f(n-2*j-1)*f(k-2*j-1)) for j in range(1+min(((n-1)//2), ((k-1)//2))) )
def A(n,k): return p(n,k) - q(n,k)
[A(n-1,n+2) for n in range(1,50)] # G. C. Greubel, Oct 31 2022
A377069
Triangle read by rows: T(n,k) is the number of (k+1)-vertex dominating sets of the (n+1)-path graph that include the first vertex.
Original entry on oeis.org
1, 1, 1, 0, 2, 1, 0, 2, 3, 1, 0, 1, 5, 4, 1, 0, 0, 5, 9, 5, 1, 0, 0, 3, 13, 14, 6, 1, 0, 0, 1, 13, 26, 20, 7, 1, 0, 0, 0, 9, 35, 45, 27, 8, 1, 0, 0, 0, 4, 35, 75, 71, 35, 9, 1, 0, 0, 0, 1, 26, 96, 140, 105, 44, 10, 1, 0, 0, 0, 0, 14, 96, 216, 238, 148, 54, 11, 1
Offset: 0
Triangle begins:
1;
1, 1;
0, 2, 1;
0, 2, 3, 1;
0, 1, 5, 4, 1;
0, 0, 5, 9, 5, 1;
0, 0, 3, 13, 14, 6, 1;
0, 0, 1, 13, 26, 20, 7, 1;
0, 0, 0, 9, 35, 45, 27, 8, 1;
0, 0, 0, 4, 35, 75, 71, 35, 9, 1;
0, 0, 0, 1, 26, 96, 140, 105, 44, 10, 1;
...
Corresponding to T(4,2) = 5, a path graph with 5 vertices has the following 3-vertex dominating sets that include the first vertex (x marks a vertex in the set):
x . . x x
x . x . x
x . x x .
x x . . x
x x . x .
Showing 1-9 of 9 results.
Comments