A108626 Antidiagonal sums of square array A108625, in which row n equals the crystal ball sequence for A_n lattice.
1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, 38919, 125578, 406865, 1322772, 4313155, 14099524, 46192483, 151628090, 498578411, 1641921014, 5414619739, 17878144968, 59097039545, 195548471268, 647665451911, 2146947613286
Offset: 0
Keywords
Examples
Log(A(x)) = 2*x + 6*x^2/2 + 20*x^3/3 + ... + A108627(n)*x^n/n + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Thomas Baruchel and C. Elsner, On error sums formed by rational approximations with split denominators, arXiv preprint arXiv:1602.06445 [math.NT], 2016.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020, p. 16.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 1/Sqrt(1-4*x+2*x^2+x^4) )); // G. C. Greubel, Oct 06 2023 -
Maple
a := n -> add(binomial(n,k)*hypergeom([-k,k-n,k-n], [1,-n], 1), k=0..n): seq(simplify(a(n)), n=0..25); # Peter Luschny, Feb 13 2018
-
Mathematica
CoefficientList[Series[1/Sqrt[x^4+2*x^2-4*x+1], {x, 0, 50}], x] (* Vincenzo Librandi, Nov 08 2014 *)
-
PARI
a(n)=sum(k=0,n,sum(i=0,k,binomial(n-k,i)^2*binomial(n-i,k-i)))
-
PARI
{a(n)=polcoeff( sum(m=0, n, x^m * sum(k=0, m, binomial(m, k)^2 * x^k) / (1-x +x*O(x^n))^(m+1)) , n)} for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 08 2014
-
SageMath
def A108626_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/sqrt(1-4*x+2*x^2+x^4) ).list() A108626_list(40) # G. C. Greubel, Oct 06 2023
Formula
a(n) = Sum_{k=0..n} Sum_{i=0..k} C(n, i)^2 * C(n+k-i, k-i).
G.f.: 1 / sqrt(x^4 + 2*x^2 - 4*x + 1). - Thomas Baruchel, Nov 08 2014
G.f.: A(x) = exp( Sum_{n>=1} A108627(n)*x^n/n ), where A108627 has g.f.: 2*x*(1 - x - x^3)/((1-x)*(1 - 3*x - x^2 - x^3)).
a(n) = ( (5*n-3)*a(n-1) - (6*n-8)*a(n-2) + (2*n-4)*a(n-3) - (n-2)*a(n-4) + (n-3)*a(n-5) ) / n. - Thomas Baruchel, Nov 08 2014
a(n+2) - 2*a(n+1) - a(n) = 2*Sum_{k=0..n} Sum_{i=0..k} binomial(n-k+1,i-1)*binomial(n-k+1,i)*binomial(n-i+1,k-i) = Sum_{k=0..n} a(k)*A086581(n-k+1). - Thomas Baruchel, Nov 08 2014
G.f.: Sum_{n>=0} (2*n)!/n!^2 * x^(2*n) / ((1-x)*(1-2*x)^(3*n+1)). - Paul D. Hanna, Nov 08 2014
G.f.: Sum_{n>=0} x^n/(1-x)^(n+1) * Sum_{k=0..n} C(n,k)^2 * x^k. - Paul D. Hanna, Nov 08 2014
Recurrence: n*a(n) = 2*(2*n-1)*a(n-1) - 2*(n-1)*a(n-2) - (n-2)*a(n-4). - Vaclav Kotesovec, Dec 20 2015
a(n) = Sum_{k=0..n} binomial(n,k)*hypergeometric3F2([-k,k-n,k-n], [1,-n], 1). - Peter Luschny, Feb 13 2018
Comments