A047202 Numbers that are congruent to {2, 3, 4} mod 5.
2, 3, 4, 7, 8, 9, 12, 13, 14, 17, 18, 19, 22, 23, 24, 27, 28, 29, 32, 33, 34, 37, 38, 39, 42, 43, 44, 47, 48, 49, 52, 53, 54, 57, 58, 59, 62, 63, 64, 67, 68, 69, 72, 73, 74, 77, 78, 79, 82, 83, 84, 87, 88, 89, 92, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108
Offset: 1
Links
- Stefano Spezia, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Cf. A001622.
Programs
-
Magma
[n: n in [1..150] | n mod 5 in [2..4]]; // Vincenzo Librandi, Mar 31 2011
-
Maple
A047202:=n->(15*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047202(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
-
Mathematica
Select[Range[0, 200], MemberQ[{2, 3, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
-
PARI
a(n)=n\3*5+[-1,2,3][n%3+1] \\ Charles R Greathouse IV, Dec 22 2011
Formula
G.f.: x*(2+x+x^2+x^3) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 07 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>3.
a(n) = (15*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 5k-1, a(3k-1) = 5k-2, a(3k-2) = 5k-3. (End)
a(n) = 2*n - floor((n-1)/3) - ((n-1) mod 3). - Wesley Ivan Hurt, Sep 26 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt((5+sqrt(5))/10)*Pi/5 + log(phi)/sqrt(5) - 3*log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 16 2023