cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047227 Numbers that are congruent to {1, 2, 3, 4} mod 6.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 10, 13, 14, 15, 16, 19, 20, 21, 22, 25, 26, 27, 28, 31, 32, 33, 34, 37, 38, 39, 40, 43, 44, 45, 46, 49, 50, 51, 52, 55, 56, 57, 58, 61, 62, 63, 64, 67, 68, 69, 70, 73, 74, 75, 76, 79, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 97, 98
Offset: 1

Views

Author

Keywords

Comments

a(k)^m is a term for k and m in N. - Jerzy R Borysowicz, Apr 18 2023

Crossrefs

Complement of A047264. Equals A203016 divided by 3.

Programs

  • Magma
    [n: n in [0..100] | n mod 6 in [1..4]]; // Vincenzo Librandi, Jan 06 2013
    
  • Maple
    A047227:=n->(6*n-5-I^(2*n)+(1+I)*I^(1-n)+(1-I)*I^(n-1))/4: seq(A047227(n), n=1..100); # Wesley Ivan Hurt, May 20 2016
  • Mathematica
    Complement[Range[100], Flatten[Table[{6n - 1, 6n}, {n, 0, 15}]]] (* Alonso del Arte, Jul 07 2011 *)
    Select[Range[100], MemberQ[{1, 2, 3, 4}, Mod[#, 6]]&] (* Vincenzo Librandi, Jan 06 2013 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -1,1,0,0,1]^(n-1)*[1;2;3;4;7])[1,1] \\ Charles R Greathouse IV, May 03 2023

Formula

From Johannes W. Meijer, Jul 07 2011: (Start)
a(n) = floor((n+2)/4) + floor((n+1)/4) + floor(n/4) + 2*floor((n-1)/4) + floor((n+3)/4).
G.f.: x*(1 + x + x^2 + x^3 + 2*x^4)/(x^5 - x^4 - x + 1). (End)
From Wesley Ivan Hurt, May 20 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (6n - 5 - i^(2n) + (1+i)*i^(1-n) + (1-i)*i^(n-1))/4 where i=sqrt(-1).
a(2n) = A047235(n), a(2n-1) = A047241(n). (End)
E.g.f.: (4 + sin(x) - cos(x) + (3*x - 2)*sinh(x) + 3*(x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 21 2016
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = A047246(n) + 1.
a(n+2) - a(n+1) = A093148(n) for n>0.
a(1-n) = - A047247(n). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/12 + 2*log(2)/3 - log(3)/4. - Amiram Eldar, Dec 17 2021