A047243 Numbers that are congruent to {2, 3} mod 6.
2, 3, 8, 9, 14, 15, 20, 21, 26, 27, 32, 33, 38, 39, 44, 45, 50, 51, 56, 57, 62, 63, 68, 69, 74, 75, 80, 81, 86, 87, 92, 93, 98, 99, 104, 105, 110, 111, 116, 117, 122, 123, 128, 129, 134, 135, 140, 141, 146, 147, 152, 153, 158, 159, 164, 165, 170, 171, 176, 177, 182, 183
Offset: 1
References
- Emil Grosswald, Topics From the Theory of Numbers, 1966, p. 65, problem 23.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
GAP
List([1..70], n-> 3*n-2-(-1)^n) # G. C. Greubel, Jun 30 2019
-
Magma
[3*n-2-(-1)^n: n in [1..70]]; // G. C. Greubel, Jun 30 2019
-
Mathematica
Select[Range[0, 210], MemberQ[{2, 3}, Mod[#, 6]] &] (* or *) Fold[Append[#1, 6 #2 - Last@ #1 - 7] &, {2}, Range[2, 70]] (* or *) Rest@ CoefficientList[Series[x(2+x+3x^2)/((1+x)(1-x)^2), {x, 0, 70}], x] (* Michael De Vlieger, Jan 12 2018 *)
-
PARI
vector(70, n, 3*n-2-(-1)^n) \\ G. C. Greubel, Jun 30 2019
-
Sage
[3*n-2-(-1)^n for n in (1..70)] # G. C. Greubel, Jun 30 2019
Formula
a(n) = 6*n - 7 - a(n-1), with a(1)=2. - Vincenzo Librandi, Aug 05 2010
G.f.: x*(2+x+3*x^2) / ( (1+x)*(1-x)^2 ). - R. J. Mathar, Oct 08 2011
From Guenther Schrack, Jun 21 2019: (Start)
a(n) = a(n-2) + 6 with a(1)=2, a(2)=3 for n > 2;
a(n) = 3*n - 2 - (-1)^n. (End)
E.g.f.: 3 - 3*(1-x)*cosh(x) - (1-3*x)*sinh(x). - G. C. Greubel, Jun 30 2019
E.g.f.: 3 + (3*x-3)*exp(x) + 2*sinh(x). - David Lovler, Jul 16 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(12*sqrt(3)) + log(3)/4 - log(2)/3. - Amiram Eldar, Dec 13 2021
Extensions
More terms from Cino Hilliard, May 09 2003
Comments