A047261 Numbers that are congruent to {2, 4, 5} mod 6.
2, 4, 5, 8, 10, 11, 14, 16, 17, 20, 22, 23, 26, 28, 29, 32, 34, 35, 38, 40, 41, 44, 46, 47, 50, 52, 53, 56, 58, 59, 62, 64, 65, 68, 70, 71, 74, 76, 77, 80, 82, 83, 86, 88, 89, 92, 94, 95, 98, 100, 101, 104, 106, 107, 110, 112, 113, 116, 118, 119, 122, 124
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Haskell
a047261 n = a047261_list !! n a047261_list = 2 : 4 : 5 : map (+ 6) a047261_list -- Reinhard Zumkeller, Feb 19 2013, Jul 06 2012
-
Magma
[n : n in [0..150] | n mod 6 in [2, 4, 5]]; // Wesley Ivan Hurt, Jun 14 2016
-
Maple
A047261:=n->(6*n-1-2*cos(2*n*Pi/3))/3: seq(A047261(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
-
Mathematica
CoefficientList[Series[(1 + x)*(x^2 + 2)/((1 + x + x^2)*(x - 1)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Aug 16 2014 *) Select[ Range@ 125, MemberQ[{2, 4, 5}, Mod[#, 6]] &] (* or *) LinearRecurrence[{1, 0, 1, -1}, {2, 4, 5, 8}, 62] (* Robert G. Wilson v, Jun 13 2018 *)
Formula
G.f.: x*(1+x)*(x^2+2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
A214090(a(n)) = 1. - Reinhard Zumkeller, Jul 06 2012
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (6*n - 1 - 2*cos(2*n*Pi/3))/3.
a(3k) = 6k-1, a(3k-1) = 6k-2, a(3k-2) = 6k-4. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 - log(2+sqrt(3))/(2*sqrt(3)) + log(2)/3. - Amiram Eldar, Dec 16 2021
E.g.f.: (3 + exp(x)*(6*x - 1) - 2*exp(-x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Jul 26 2024
Extensions
More terms from Wesley Ivan Hurt, Aug 16 2014
Comments