cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047261 Numbers that are congruent to {2, 4, 5} mod 6.

Original entry on oeis.org

2, 4, 5, 8, 10, 11, 14, 16, 17, 20, 22, 23, 26, 28, 29, 32, 34, 35, 38, 40, 41, 44, 46, 47, 50, 52, 53, 56, 58, 59, 62, 64, 65, 68, 70, 71, 74, 76, 77, 80, 82, 83, 86, 88, 89, 92, 94, 95, 98, 100, 101, 104, 106, 107, 110, 112, 113, 116, 118, 119, 122, 124
Offset: 1

Views

Author

Keywords

Comments

If B and C are terms in the sequence then 2*B*C is a term. B (resp. C) is a term iff B (resp. C) mod 6 = 2, 4 or 5. It follows that (2*B*C) mod 6 = (2*(B mod 6)*(C mod 6)) mod 6 = 2 or 4 and therefore 2*B*C is a term. Examples: for B=16 and C=29, 2*16*29 = 928 is a term: (2*B*C) mod 6 = (2*16*29) mod 6 = 4; (2*2*2) mod 6 = 2. - Jerzy R Borysowicz, May 24 2018

Crossrefs

Cf. A047242 (complement).

Programs

  • Haskell
    a047261 n = a047261_list !! n
    a047261_list = 2 : 4 : 5 : map (+ 6) a047261_list
    -- Reinhard Zumkeller, Feb 19 2013, Jul 06 2012
    
  • Magma
    [n : n in [0..150] | n mod 6 in [2, 4, 5]]; // Wesley Ivan Hurt, Jun 14 2016
  • Maple
    A047261:=n->(6*n-1-2*cos(2*n*Pi/3))/3: seq(A047261(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
  • Mathematica
    CoefficientList[Series[(1 + x)*(x^2 + 2)/((1 + x + x^2)*(x - 1)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Aug 16 2014 *)
    Select[ Range@ 125, MemberQ[{2, 4, 5}, Mod[#, 6]] &] (* or *)
    LinearRecurrence[{1, 0, 1, -1}, {2, 4, 5, 8}, 62] (* Robert G. Wilson v, Jun 13 2018 *)

Formula

G.f.: x*(1+x)*(x^2+2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
A214090(a(n)) = 1. - Reinhard Zumkeller, Jul 06 2012
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (6*n - 1 - 2*cos(2*n*Pi/3))/3.
a(3k) = 6k-1, a(3k-1) = 6k-2, a(3k-2) = 6k-4. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 - log(2+sqrt(3))/(2*sqrt(3)) + log(2)/3. - Amiram Eldar, Dec 16 2021
E.g.f.: (3 + exp(x)*(6*x - 1) - 2*exp(-x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Jul 26 2024

Extensions

More terms from Wesley Ivan Hurt, Aug 16 2014