A047264 Numbers that are congruent to 0 or 5 mod 6.
0, 5, 6, 11, 12, 17, 18, 23, 24, 29, 30, 35, 36, 41, 42, 47, 48, 53, 54, 59, 60, 65, 66, 71, 72, 77, 78, 83, 84, 89, 90, 95, 96, 101, 102, 107, 108, 113, 114, 119, 120, 125, 126, 131, 132, 137, 138, 143, 144, 149, 150, 155, 156, 161, 162, 167, 168, 173, 174
Offset: 1
Examples
From _Vincenzo Librandi_, Aug 05 2010: (Start) a(2) = 6*2 - 0 - 7 = 5; a(3) = 6*3 - 5 - 7 = 6; a(4) = 6*4 - 6 - 7 = 11. (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Herta T. Freitag, Problem B-776: An Even Sum, Fibonacci Quarterly, Vol. 32, No. 5 (1994), p. 468; An Even Sum, Solution to Problem B-77 by Paul S. Bruckman, ibid., Vol. 34, No. 1 (1996), p. 85.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Complement of A047227.
Programs
-
Maple
c:=proc(n) if n mod 6 = 0 or n mod 6 = 5 then n else fi end: seq(c(n),n=0..149); # Emeric Deutsch, Mar 28 2005
-
Mathematica
Select[Range[0, 149], MemberQ[{0, 5}, Mod[#, 6]] &] (* or *) Fold[Append[#1, 6 #2 - Last@ #1 - 7] &, {0}, Range[2, 50]] (* or *) Rest@ CoefficientList[Series[x^2*(5 + x)/((1 + x) (x - 1)^2), {x, 0, 50}], x] (* Michael De Vlieger, Jan 12 2018 *)
-
PARI
forstep(n=0,200,[5,1],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
-
PARI
a(n) = 3*n - 2 + (-1)^n \\ David Lovler, Aug 04 2022
Formula
a(n) = 3*n + (-1)^n - 2.
a(n) = 6*n - a(n-1) - 7 (with a(1)=0). - Vincenzo Librandi, Aug 05 2010
G.f.: x^2*(5+x) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
Let b(1)=0, b(2)=1 and b(k+2) = b(k+1) - b(k) + k^2; then a(n) is the sequence of integers such that b(a(n)) is a square = (a(n) + 1)^2. - Benoit Cloitre, Sep 04 2002
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=5 and b(k)=A007283(k) for k > 0. - Philippe Deléham, Oct 17 2011
Sum_{n>=2} (-1)^n/a(n) = log(2)/3 + log(3)/4 - sqrt(3)*Pi/12. - Amiram Eldar, Dec 13 2021
E.g.f.: 1 + (3*x - 2)*exp(x) + exp(-x). - David Lovler, Aug 08 2022
Comments