A047266 Numbers that are congruent to {0, 1, 5} mod 6.
0, 1, 5, 6, 7, 11, 12, 13, 17, 18, 19, 23, 24, 25, 29, 30, 31, 35, 36, 37, 41, 42, 43, 47, 48, 49, 53, 54, 55, 59, 60, 61, 65, 66, 67, 71, 72, 73, 77, 78, 79, 83, 84, 85, 89, 90, 91, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114, 115, 119, 120, 121, 125
Offset: 1
Links
- Craig Knecht, Triangular row sum of A204259.
- Mathematics Stack Exchange, Prove: Exactly a quarter of 3-part partitions of numbers >2 equal to 0, 2, 10 mod 12 will make a triangle, 2013.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 6 in [0, 1, 5]]; // Wesley Ivan Hurt, Jun 13 2016
-
Maple
seq(seq(6*s+j, j=[0,1,5]), s=0..100); # Robert Israel, Dec 01 2014
-
Mathematica
Select[Range[0, 200], Mod[#, 6] == 0 || Mod[#, 6] == 1 || Mod[#, 6] == 5 &] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *)
-
PARI
concat(0, Vec(x^2*(1+4*x+x^2)/((1+x+x^2)*(x-1)^2) + O(x^100))) \\ Altug Alkan, Oct 17 2015
Formula
G.f.: x^2*(1+4*x+x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = 2*(n-1) + A057078(n). - Robert Israel, Dec 01 2014
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. - Wesley Ivan Hurt, Nov 09 2015
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = 2*n-2+cos(2*n*Pi/3)+sin(2*n*Pi/3)/sqrt(3).
a(3k) = 6k-1, a(3k-1) = 6k-5, a(3k-2) = 6k-6. (End)
Sum_{n>=2} (-1)^n/a(n) = log(2)/6 + log(2 + sqrt(3))/sqrt(3). - Amiram Eldar, Dec 14 2021
Comments