cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047268 Numbers that are congruent to {1, 2, 5} mod 6.

Original entry on oeis.org

1, 2, 5, 7, 8, 11, 13, 14, 17, 19, 20, 23, 25, 26, 29, 31, 32, 35, 37, 38, 41, 43, 44, 47, 49, 50, 53, 55, 56, 59, 61, 62, 65, 67, 68, 71, 73, 74, 77, 79, 80, 83, 85, 86, 89, 91, 92, 95, 97, 98, 101, 103, 104, 107, 109, 110, 113, 115, 116, 119, 121, 122, 125
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that Fibonacci(n) mod 4 = 1. - Gary Detlefs, Jun 01 2012

Programs

  • Magma
    I:=[1, 2, 5, 7]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Apr 26 2012
  • Maple
    A047268:=n->(6*n-4+cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3: seq(A047268(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
  • Mathematica
    Select[Range[0,120], MemberQ[{1,2,5}, Mod[#,6]]&] (* Vincenzo Librandi, Apr 26 2012 *)

Formula

From Colin Barker, Mar 13 2012: (Start)
G.f.: x*(1+x+3*x^2+x^3)/((1-x)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (End)
a(n) = 2*n-1-floor((n mod 3)/2). - Gary Detlefs, Jun 01 2012
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (6*n-4+cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3.
a(3k) = 6k-1, a(3k-1) = 6k-4, a(3k-2) = 6k-5. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (6-sqrt(3))*Pi/18 - log(2)/6. - Amiram Eldar, Dec 16 2021