A047268 Numbers that are congruent to {1, 2, 5} mod 6.
1, 2, 5, 7, 8, 11, 13, 14, 17, 19, 20, 23, 25, 26, 29, 31, 32, 35, 37, 38, 41, 43, 44, 47, 49, 50, 53, 55, 56, 59, 61, 62, 65, 67, 68, 71, 73, 74, 77, 79, 80, 83, 85, 86, 89, 91, 92, 95, 97, 98, 101, 103, 104, 107, 109, 110, 113, 115, 116, 119, 121, 122, 125
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
I:=[1, 2, 5, 7]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Apr 26 2012
-
Maple
A047268:=n->(6*n-4+cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3: seq(A047268(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
-
Mathematica
Select[Range[0,120], MemberQ[{1,2,5}, Mod[#,6]]&] (* Vincenzo Librandi, Apr 26 2012 *)
Formula
From Colin Barker, Mar 13 2012: (Start)
G.f.: x*(1+x+3*x^2+x^3)/((1-x)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (End)
a(n) = 2*n-1-floor((n mod 3)/2). - Gary Detlefs, Jun 01 2012
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (6*n-4+cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3.
a(3k) = 6k-1, a(3k-1) = 6k-4, a(3k-2) = 6k-5. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (6-sqrt(3))*Pi/18 - log(2)/6. - Amiram Eldar, Dec 16 2021
Comments