A047269 Numbers that are congruent to {0, 1, 2, 5} mod 6.
0, 1, 2, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 19, 20, 23, 24, 25, 26, 29, 30, 31, 32, 35, 36, 37, 38, 41, 42, 43, 44, 47, 48, 49, 50, 53, 54, 55, 56, 59, 60, 61, 62, 65, 66, 67, 68, 71, 72, 73, 74, 77, 78, 79, 80, 83, 84, 85, 86, 89, 90, 91, 92, 95, 96, 97
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
I:=[0, 1, 2, 5, 6]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, May 15 2012
-
Maple
A047269:=n->(-7+(-1)^n+(1+I)*(-I)^n+(1-I)*I^n+6*n)/4: seq(A047269(n), n=1..100); # Wesley Ivan Hurt, May 22 2016
-
Mathematica
Select[Range[0,4000], MemberQ[{0,1,2,5}, Mod[#,6]]&] (* Vincenzo Librandi, May 15 2012 *) LinearRecurrence[{1,0,0,1,-1},{0,1,2,5,6},80] (* Harvey P. Dale, Jun 21 2022 *)
-
PARI
x='x+O('x^100); concat(0, Vec(x^2*(1+x+3*x^2+x^3)/((1-x)^2*(1+x)*(1+x^2)))) \\ Altug Alkan, Dec 24 2015
Formula
From Colin Barker, May 14 2012: (Start)
a(n) = (-7+(-1)^n+(1+i)*(-i)^n+(1-i)*i^n+6*n)/4 where i=sqrt(-1).
G.f.: x^2*(1+x+3*x^2+x^3)/((1-x)^2*(1+x)*(1+x^2)). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Vincenzo Librandi, May 15 2012
Sum_{n>=2} (-1)^n/a(n) = log(3)/4 + 2*log(2)/3 - sqrt(3)*Pi/36. - Amiram Eldar, Dec 16 2021
a(n) = n - 1 + 2*floor(n/4). - Taras Goy, Jan 03 2025