A047275 Numbers that are congruent to {0, 1, 6} mod 7.
0, 1, 6, 7, 8, 13, 14, 15, 20, 21, 22, 27, 28, 29, 34, 35, 36, 41, 42, 43, 48, 49, 50, 55, 56, 57, 62, 63, 64, 69, 70, 71, 76, 77, 78, 83, 84, 85, 90, 91, 92, 97, 98, 99, 104, 105, 106, 111, 112, 113, 118, 119, 120, 125, 126, 127, 132, 133, 134, 139, 140
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Cf. A047299.
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [0, 1, 6]]; // Wesley Ivan Hurt, Jun 10 2016
-
Maple
A047275:=n->(21*n-21+12*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047275(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
-
Mathematica
Select[Range[0, 120], Function[k, Mod[#, 7] == k] /@ Or[0, 1, 6] &] (* or *) Select[Range[0, 120], Function[k, Floor[k (#^2/7)] == k Floor[#^2/7]] /@ Or[4, 5, 6] &] (* Michael De Vlieger, Dec 03 2015 *) LinearRecurrence[{1, 0, 1, -1}, {0, 1, 6, 7}, 100] (* Vincenzo Librandi, Jun 14 2016 *)
-
PARI
concat(0, Vec(x^2*(1+5*x+x^2)/((1+x+x^2)*(x-1)^2) + O(x^100))) \\ Altug Alkan, Dec 03 2015
Formula
G.f.: x^2*(1+5*x+x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-21+12*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-1, a(3k-1) = 7k-6, a(3k-2) = 7k-7. (End)
Comments