cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047275 Numbers that are congruent to {0, 1, 6} mod 7.

Original entry on oeis.org

0, 1, 6, 7, 8, 13, 14, 15, 20, 21, 22, 27, 28, 29, 34, 35, 36, 41, 42, 43, 48, 49, 50, 55, 56, 57, 62, 63, 64, 69, 70, 71, 76, 77, 78, 83, 84, 85, 90, 91, 92, 97, 98, 99, 104, 105, 106, 111, 112, 113, 118, 119, 120, 125, 126, 127, 132, 133, 134, 139, 140
Offset: 1

Views

Author

Keywords

Comments

Nonnegative m such that floor(k*m^2/7) = k*floor(m^2/7), where k = 4, 5 or 6. See also the comment in A047299. [Bruno Berselli, Dec 03 2015]

Crossrefs

Cf. A047299.

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0, 1, 6]]; // Wesley Ivan Hurt, Jun 10 2016
  • Maple
    A047275:=n->(21*n-21+12*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047275(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
  • Mathematica
    Select[Range[0, 120], Function[k, Mod[#, 7] == k] /@ Or[0, 1, 6] &] (* or *) Select[Range[0, 120], Function[k, Floor[k (#^2/7)] == k Floor[#^2/7]] /@ Or[4, 5, 6] &] (* Michael De Vlieger, Dec 03 2015 *)
    LinearRecurrence[{1, 0, 1, -1}, {0, 1, 6, 7}, 100] (* Vincenzo Librandi, Jun 14 2016 *)
  • PARI
    concat(0, Vec(x^2*(1+5*x+x^2)/((1+x+x^2)*(x-1)^2) + O(x^100))) \\ Altug Alkan, Dec 03 2015
    

Formula

G.f.: x^2*(1+5*x+x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-21+12*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-1, a(3k-1) = 7k-6, a(3k-2) = 7k-7. (End)