A047290 Numbers that are congruent to {1, 4, 6} mod 7.
1, 4, 6, 8, 11, 13, 15, 18, 20, 22, 25, 27, 29, 32, 34, 36, 39, 41, 43, 46, 48, 50, 53, 55, 57, 60, 62, 64, 67, 69, 71, 74, 76, 78, 81, 83, 85, 88, 90, 92, 95, 97, 99, 102, 104, 106, 109, 111, 113, 116, 118, 120, 123, 125, 127, 130, 132, 134, 137, 139, 141
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Melvyn B. Nathanson, On the fractional parts of roots of positive real numbers, Amer. Math. Monthly, 120 (2013), 409-429 [see p. 417].
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
I:=[1, 4, 6, 8]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi Apr 26 2012
-
Maple
A047290:=n->(21*n-9-2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047290(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
-
Mathematica
Select[Range[0,12000], MemberQ[{1,4,6}, Mod[#,7]]&] (* Vincenzo Librandi, Apr 26 2012 *) LinearRecurrence[{1,0,1,-1}, {1,4,6,8}, 60] (* Harvey P. Dale, Sep 19 2014 *)
Formula
From Colin Barker, Mar 13 2012: (Start)
G.f.: x*(1+3*x+2*x^2+x^3)/((1-x)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (End)
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = (21*n-9-2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-1, a(3k-1) = 7k-3, a(3k-2) = 7k-6. (End)