cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047290 Numbers that are congruent to {1, 4, 6} mod 7.

Original entry on oeis.org

1, 4, 6, 8, 11, 13, 15, 18, 20, 22, 25, 27, 29, 32, 34, 36, 39, 41, 43, 46, 48, 50, 53, 55, 57, 60, 62, 64, 67, 69, 71, 74, 76, 78, 81, 83, 85, 88, 90, 92, 95, 97, 99, 102, 104, 106, 109, 111, 113, 116, 118, 120, 123, 125, 127, 130, 132, 134, 137, 139, 141
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    I:=[1, 4, 6, 8]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi Apr 26 2012
  • Maple
    A047290:=n->(21*n-9-2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047290(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
  • Mathematica
    Select[Range[0,12000], MemberQ[{1,4,6}, Mod[#,7]]&] (* Vincenzo Librandi, Apr 26 2012 *)
    LinearRecurrence[{1,0,1,-1}, {1,4,6,8}, 60] (* Harvey P. Dale, Sep 19 2014 *)

Formula

From Colin Barker, Mar 13 2012: (Start)
G.f.: x*(1+3*x+2*x^2+x^3)/((1-x)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (End)
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = (21*n-9-2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-1, a(3k-1) = 7k-3, a(3k-2) = 7k-6. (End)