A047322 Numbers that are congruent to {0, 1, 5, 6} mod 7.
0, 1, 5, 6, 7, 8, 12, 13, 14, 15, 19, 20, 21, 22, 26, 27, 28, 29, 33, 34, 35, 36, 40, 41, 42, 43, 47, 48, 49, 50, 54, 55, 56, 57, 61, 62, 63, 64, 68, 69, 70, 71, 75, 76, 77, 78, 82, 83, 84, 85, 89, 90, 91, 92, 96, 97, 98, 99, 103, 104, 105, 106, 110, 111
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [0, 1, 5, 6]]; // Wesley Ivan Hurt, May 23 2016
-
Maple
A047322:=n->(14*n-11-3*I^(2*n)+(3-3*I)*I^(-n)+(3+3*I)*I^n)/8: seq(A047322(n), n=1..100); # Wesley Ivan Hurt, May 23 2016
-
Mathematica
Table[(14n-11-3*I^(2n)+(3-3*I)*I^(-n)+(3+3*I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 23 2016 *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 5, 6, 7}, 60] (* Vincenzo Librandi, May 24 2016 *)
Formula
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=5, b(k)=7*2^(k-2) for k>1. - Philippe Deléham, Oct 19 2011
G.f.: x^2*(1+4*x+x^2+x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 03 2011
From Wesley Ivan Hurt, May 23 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-11-3*I^(2n)+(3-3*I)*I^(-n)+(3+3*I)*I^n)/8 where I=sqrt(-1).
E.g.f.: (4 - 3*sin(x) + 3*cos(x) + (7*x - 4)*sinh(x) + 7*(x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 24 2016
Extensions
More terms from Wesley Ivan Hurt, May 23 2016