A047324 Numbers that are congruent to {0, 2, 5, 6} mod 7.
0, 2, 5, 6, 7, 9, 12, 13, 14, 16, 19, 20, 21, 23, 26, 27, 28, 30, 33, 34, 35, 37, 40, 41, 42, 44, 47, 48, 49, 51, 54, 55, 56, 58, 61, 62, 63, 65, 68, 69, 70, 72, 75, 76, 77, 79, 82, 83, 84, 86, 89, 90, 91, 93, 96, 97, 98, 100, 103, 104, 105, 107, 110, 111
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [0, 2, 5, 6]]; // Wesley Ivan Hurt, Jun 03 2016
-
Maple
A047324:=n->(14*n-9-I^(2*n)+(1-3*I)*I^(-n)+(1+3*I)*I^n)/8: seq(A047324(n), n=1..100); # Wesley Ivan Hurt, Jun 03 2016
-
Mathematica
Table[(14n - 9 - I^(2n) + (1 - 3 * I) * I^(-n) + (1 + 3 * I) * I^n)/8, {n, 80}] (* Wesley Ivan Hurt, Jun 03 2016 *) Flatten[Table[7n + {0, 2, 5, 6}, {n, 0, 15}]] (* Alonso del Arte, Jun 04 2016 *) LinearRecurrence[{1,0,0,1,-1},{0,2,5,6,7},80] (* Harvey P. Dale, Jan 10 2023 *)
Formula
G.f.: x^2*(2+3*x+x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 03 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
a(n) = (14*n - 9 - i^(2*n) + (1 - 3*i)*i^(-n) + (1 + 3*i)*i^n)/8 where i = sqrt(-1).
E.g.f.: (4 - 3*sin(x) + cos(x) + (7*x - 4)*sinh(x) + (7*x - 5)*cosh(x))/4. - Ilya Gutkovskiy, Jun 04 2016