A047340 Numbers that are congruent to {0, 2, 3, 4} mod 7.
0, 2, 3, 4, 7, 9, 10, 11, 14, 16, 17, 18, 21, 23, 24, 25, 28, 30, 31, 32, 35, 37, 38, 39, 42, 44, 45, 46, 49, 51, 52, 53, 56, 58, 59, 60, 63, 65, 66, 67, 70, 72, 73, 74, 77, 79, 80, 81, 84, 86, 87, 88, 91, 93, 94, 95, 98, 100, 101, 102, 105, 107, 108, 109, 112
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [0,2,3,4]]; // Vincenzo Librandi, Feb 17 2014
-
Maple
A047340:=n->(14*n-17-I^(2*n)-(3-I)*I^(-n)-(3+I)*I^n)/8: seq(A047340(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
-
Mathematica
Select[Range[0,100],MemberQ[{0,2,3,4},Mod[#,7]]&] (* or *) LinearRecurrence[ {1,0,0,1,-1},{0,2,3,4,7},100] (* Harvey P. Dale, Feb 16 2014 *) CoefficientList[Series[x (2 + x + x^2 + 3 x^3)/((1 + x) (1 + x^2) (x - 1)^2), {x, 0, 200}], x] (* Vincenzo Librandi, Feb 17 2014 *)
Formula
G.f.: x^2*(2+x+x^2+3*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (14n-17-i^(2n)-(3-i)*i^(-n)-(3+i)*i^n)/8 where i=sqrt(-1).
Extensions
More terms from Vincenzo Librandi, Feb 17 2014