cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047340 Numbers that are congruent to {0, 2, 3, 4} mod 7.

Original entry on oeis.org

0, 2, 3, 4, 7, 9, 10, 11, 14, 16, 17, 18, 21, 23, 24, 25, 28, 30, 31, 32, 35, 37, 38, 39, 42, 44, 45, 46, 49, 51, 52, 53, 56, 58, 59, 60, 63, 65, 66, 67, 70, 72, 73, 74, 77, 79, 80, 81, 84, 86, 87, 88, 91, 93, 94, 95, 98, 100, 101, 102, 105, 107, 108, 109, 112
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0,2,3,4]]; // Vincenzo Librandi, Feb 17 2014
  • Maple
    A047340:=n->(14*n-17-I^(2*n)-(3-I)*I^(-n)-(3+I)*I^n)/8: seq(A047340(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
  • Mathematica
    Select[Range[0,100],MemberQ[{0,2,3,4},Mod[#,7]]&] (* or *) LinearRecurrence[ {1,0,0,1,-1},{0,2,3,4,7},100] (* Harvey P. Dale, Feb 16 2014 *)
    CoefficientList[Series[x (2 + x + x^2 + 3 x^3)/((1 + x) (1 + x^2) (x - 1)^2), {x, 0, 200}], x] (* Vincenzo Librandi, Feb 17 2014 *)

Formula

G.f.: x^2*(2+x+x^2+3*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (14n-17-i^(2n)-(3-i)*i^(-n)-(3+i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047348(n), a(2n-1) = A047355(n). (End)

Extensions

More terms from Vincenzo Librandi, Feb 17 2014