A047347 Numbers that are congruent to {0, 1, 4} mod 7.
0, 1, 4, 7, 8, 11, 14, 15, 18, 21, 22, 25, 28, 29, 32, 35, 36, 39, 42, 43, 46, 49, 50, 53, 56, 57, 60, 63, 64, 67, 70, 71, 74, 77, 78, 81, 84, 85, 88, 91, 92, 95, 98, 99, 102, 105, 106, 109, 112, 113, 116, 119, 120, 123, 126, 127, 130, 133, 134, 137, 140, 141
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [0, 1, 4]]; // Wesley Ivan Hurt, Jun 10 2016
-
Maple
A047347:=n->7*n/3-3+4*sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047347(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
-
Mathematica
Select[Range[0,200], MemberQ[{0,1,4}, Mod[#,7]]&] (* or *) LinearRecurrence[{1,0,1,-1}, {0,1,4,7}, 100] (* Harvey P. Dale, Dec 05 2012 *)
Formula
G.f.: x^2*(1+3*x+3*x^2)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 7*n/3-3+4*sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 7k-3, a(3k-1) = 7k-6, a(3k-2) = 7k-7. (End)