A047349 Numbers that are congruent to {0, 2, 4} mod 7.
0, 2, 4, 7, 9, 11, 14, 16, 18, 21, 23, 25, 28, 30, 32, 35, 37, 39, 42, 44, 46, 49, 51, 53, 56, 58, 60, 63, 65, 67, 70, 72, 74, 77, 79, 81, 84, 86, 88, 91, 93, 95, 98, 100, 102, 105, 107, 109, 112, 114, 116, 119, 121, 123, 126, 128, 130, 133, 135, 137, 140, 142
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [0, 2, 4]]; // Wesley Ivan Hurt, Jun 10 2016
-
Maple
seq(floor(n/3)+2*n, n=0..52); # Gary Detlefs, Mar 27 2010
-
Mathematica
Select[Range[0, 150], MemberQ[{0, 2, 4}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
Formula
a(n+1) = floor(n/3)+2*n. - Gary Detlefs, Mar 27 2010
G.f.: x^2*(2+2*x+3*x^2)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = n + floor(4*(n-1)/3) - 1. - Arkadiusz Wesolowski, Sep 18 2012
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-24-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-3, a(3k-1) = 7k-5, a(3k-2) = 7k-7. (End)